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8 Post-Newtonian theory: Fundamentals

Post-Newtonian theory is the theory of weak-field gravity within the near zone, and of
the slowly moving systems that generate it and respond to it. It was first encountered in
Chapter 7, where it was embedded within the post-Minkowskian approximation; the idea
relies on the slow-motion condition introduced in Sec. 6.3.2. But while post-Minkowskian
theory deals with both the near and wave zone, here we focus exclusively on the near zone.
In this chapter we develop the post-Newtonian theory systematically.

We begin in Sec. 8.1 by collecting the main ingredients obtained in Chapter 7, including
the near-zone metric to 1pn order and the matter’s energy-momentum tensor T αβ . In Sec. 8.2
we present an alternative derivation of the post-Newtonian metric, based on the Einstein
equations in their standard form; this is the “classic approach” to post-Newtonian theory,
adopted by Einstein, Infeld, and Hoffmann in the 1930s, and by Fock, Chandrasekhar,
and others in the 1960s. Although it produces the same results, we will see that the
classic approach presents us with a number of ambiguities that are not present in the post-
Minkowskian approach. In Sec. 8.3 we explore the coordinate freedom of post-Newtonian
theory, and construct the most general transformation that preserves the post-Newtonian
expansion of the metric. And in Sec. 8.4 we derive the laws of fluid dynamics in post-
Newtonian theory; these will be applied to the motion of an N -body system in Chapter 9.

8.1 Equations of post-Newtonian theory

8.1.1 Post-Newtonian metric

We restrict our attention to a matter distribution that is subjected to a slow-motion condition
of the sort first considered in Sec. 6.3.2. The distribution is characterized by a length scale
rc and a time scale tc, and these give us the characteristic velocity vc := rc/tc. We assume
that this is much smaller than the speed of light,

vc/c � 1, (8.1)

and this defines what we mean by the slow-motion condition: all speeds within the matter
distribution (such as the speed of sound within a body, or the speed of the body as a whole)
shall be small compared with the speed of light. If λc := ctc is a characteristic wavelength
of the gravitational radiation produced by the matter distribution, then Eq. (8.1) states that
rc � λc. The region of space occupied by the matter is therefore small compared with
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372 Post-Newtonian theory: Fundamentals

the characteristic wavelength; the matter is situated deep within the near-zone region of
spacetime, defined by r := |x| � λc.

Incorporating these assumptions, focusing on field points within the near zone, and
carrying out two iterations of the relaxed field equations, we obtained the spacetime metric
of a post-Newtonian system back in Sec. 7.3. The metric is displayed in Eq. (7.105), and
we reproduce it here:

g00 = −1 + 2

c2
U + 2

c4

(
� − U 2

) + O(c−6) , (8.2a)

g0 j = − 4

c3
U j + O(c−5) , (8.2b)

g jk = δ jk

(
1 + 2

c2
U

)
+ O(c−4) , (8.2c)

where

� := ψ + 1

2
∂t t X . (8.3)

The potentials that appear in the metric are defined by

U (t, x) := G

∫
ρ∗′

|x − x′| d3x ′ , (8.4a)

ψ(t, x) := G

∫
ρ∗′( 3

2v′2 − U ′ + 
′ + 3p′/ρ∗′)
|x − x′| d3x ′ , (8.4b)

X (t, x) := G

∫
ρ∗′|x − x′| d3x ′ , (8.4c)

U j (t, x) := G

∫
ρ∗′v′ j

|x − x′| d3x ′ , (8.4d)

in which the primed fluid variables are evaluated at time t and position x′; these are
determined by the equations of fluid dynamics to be derived in Sec. 8.4. As in the Newtonian
theory, the dynamics of the fluid and the dynamics of the gravitational field are intimately
coupled to each other. It should be noted that the potentials of Eqs. (8.4) are all instantaneous
potentials: their profile at time t depends on the state of the system at the same time. The
metric, however, does incorporate retardation effects that arise from solving the wave
equation for the gravitational potentials hαβ ; these are captured by the superpotential term
∂t t X in g00, which appears when h00 is expanded in powers of c−2 within the near zone.

The post-Newtonian metric makes a good approximation to the true spacetime metric
in the near zone only; the approximation is not valid beyond r = λc. The reason for this
limitation has already been invoked in Box 6.6. It has to do with the fact that while the
behavior of the metric in the near zone is directly tied to the behavior of the matter, so that
the metric varies slowly when the matter moves slowly, this is not so in the wave zone,
where the radiative behavior of the metric asserts itself. Mathematically, the slow behavior
of the metric in the near zone is expressed by the equation

∂0gαβ ∼ vc

c
∂ j gαβ, (8.5)
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373 8.1 Equations of post-Newtonian theory

which states that derivatives with respect to x0 := ct are smaller than spatial derivatives by
a factor of order vc/c � 1. If we imagine, for example, a matter distribution that consists
of N isolated bodies with positions r A(t), then the metric will depend on time through the
N position vectors, and temporal derivatives will be generated by spatial differentiation
followed by differentiation of r A(t) with respect to time; and we see that these operations
do indeed bring out the additional factors of vc/c. The situation is very different in the wave
zone, because of the radiative nature of the metric when r > λc. Here the characteristic
velocity of the field becomes the speed of light, and it is no longer related to the matter’s
velocity scale. As a result, ∂0gαβ is of the same order of magnitude as the spatial derivatives,
and the slow-motion condition no longer has the same effect on the behavior of the metric.

8.1.2 Energy-momentum tensor

The metric of Eq. (8.2) was constructed from potentials hαβ

2 obtained after two iterations
of the relaxed Einstein equations. These potentials can then be involved in a computation
of τ

αβ

2 , the effective energy-momentum pseudotensor, which can be substituted into the
conservation statement ∂βτ

αβ

2 = 0 to obtain the system’s equations of motion. But since
this conservation statement is formally equivalent to the covariant expression of energy-
momentum conservation, ∇β T αβ = 0, an alternative method to obtain the equations of
motion is to compute T αβ to the required degree of accuracy, and to insert it within the
covariant equation. This alternative method turns out to be simpler to implement than the
original one involving τ

αβ

2 .
This program will be implemented in Sec. 8.4. In preparation for this discussion, we now

compute T αβ to the required post-Newtonian order. We recall that

T αβ = (ρ + ε/c2 + p/c2)uαuβ + pgαβ , (8.6)

that ρ = ρ∗(1 − v2/2c2 − 3U/c2) + O(c−4) and that uα = γ (c, v), with γ := u0/c = 1 +
v2/2c2 + U/c2 + O(c−4). These relations give us

c−2T 00 = ρ∗
[

1 + 1

c2

(1

2
v2 − U + 


)]
+ O(c−4) , (8.7a)

c−1T 0 j = ρ∗v j

[
1 + 1

c2

(1

2
v2 − U + 
 + p/ρ∗

)]
+ O(c−4) , (8.7b)

T jk = ρ∗v jvk

[
1 + 1

c2

(1

2
v2 − U + 
 + p/ρ∗

)]
+ p

(
1 − 2

c2
U

)
δ jk

+ O(c−4) , (8.7c)

where 
 := ε/ρ∗. Note that T 00 is expanded to order c0, T 0 j to order c−1, and T jk to order
c−2. The metric, on the other hand, is expanded to order c−4 for g00, c−3 for g0 j , and c−2 for
g jk . As expressed here, the components of the energy-momentum tensor follow a reversed
hierarchy of post-Newtonian orders compared to the components of the metric. The reason
for this is that each component of the energy-momentum tensor must contain a leading-
order piece and a post-Newtonian correction if it is to yield useful information at 1pn order.
This is because the components will be inserted within the conservation equations, which
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take the schematic form c−1∂t T α0 ≈ −∂k T αk ; while the leading-order pieces will deliver
the system’s Newtonian dynamics, it is the post-Newtonian corrections that will deliver the
post-Newtonian dynamics.

8.1.3 Auxiliary potentials

For future reference we list here a number of post-Newtonian potentials that can also be
associated with a perfect fluid; some appear in the potential ψ , while others will be used
later in this chapter:

�1 := G

∫
ρ∗′v′2

|x − x′| d3x ′ , (8.8a)

�2 := G

∫
ρ∗′U ′

|x − x′| d3x ′ , (8.8b)

�3 := G

∫
ρ∗′
′

|x − x′| d3x ′ , (8.8c)

�4 := G

∫
p′

|x − x′| d3x ′ , (8.8d)

�5 := G

∫
ρ∗′∂ j ′U ′ (x − x ′) j

|x − x′| d3x ′ , (8.8e)

�6 := G

∫
ρ∗′v′

jv
′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ , (8.8f)

� j := G

∫
ρ∗′v′

k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ . (8.8g)

Again a primed variable such as ρ∗′ stands for ρ∗(t, x′), and ∂ j ′U ′ stands for the partial
derivative of U (t, x′) with respect to x ′ j .

Referring to Eq. (8.4b), we see immediately that

ψ = 3

2
�1 − �2 + �3 + 3�4 . (8.9)

In Sec. 8.4.4 we shall have occasion to prove that

∂t j X = � j − U j , (8.10a)

∂t t X = �1 + 2�4 − �5 − �6 . (8.10b)

Another useful identity is

∂ jk X = δ jkU − G

∫
ρ∗′ (x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ . (8.11)

This equation follows directly from the definition of the superpotential, and taking its trace
confirms that ∇2 X = 2U . Combining Eqs. (8.3), (8.9), and (8.10b), we arrive at

� = 2�1 − �2 + �3 + 4�4 − 1

2
�5 − 1

2
�6, (8.12)

a useful decomposition of the post-Newtonian potential � in terms of the auxiliary
potentials.
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8.1.4 Geodesic equations

To conclude this section we derive the form of the geodesic equation that governs the
motion of a test particle in the post-Newtonian spacetime. We examine both the case of
a test body that moves slowly (v/c � 1), and the case of a massless particle (such as a
photon) that moves rapidly (v/c � 1).

In either case the geodesic equation is

d2rα

dλ2
+ �α

βγ

drβ

dλ

drγ

dλ
= 0, (8.13)

in which rα(λ) describes the particle’s world line in spacetime; the parameter λ is proper
time τ in the case of a massive body, and an arbitrary affine parameter in the case of a
photon. For our purposes it is useful to alter the parameterization of the world line and adopt
the time coordinate t := x0/c instead of λ. There is a practical reason for this change: the
motion of a planet or spacecraft, or the trajectory of a light ray in space, is generally tracked
by an external observer who employs a clock that measures external time t instead of the
planet’s proper time λ; a description of the motion in terms of t is therefore much more
useful to this observer. (We shall return to this theme in Chapter 10, and give a more precise
description of the relation between t and the observer’s clock time.) A straightforward
application of the chain rule reveals that the geodesic equation becomes

dvα

dt
= −

(
�α

βγ − vα

c
�0

βγ

)
vβvγ (8.14)

when the world line is parameterized by t ; here vα := drα/dt = (c, v). The time component
of Eq. (8.14) returns 0 = 0, and the motion of the particle is completely determined by the
spatial components.

The Christoffel symbols required for the geodesic equation are obtained from Eq. (8.2),
which we insert into Eq. (5.34). We get

�0
00 = − 1

c3
∂tU + O(c−5) , (8.15a)

�0
0 j = − 1

c2
∂ jU + O(c−4) , (8.15b)

�0
jk = 2

c3

(
∂ jUk + ∂kU j

) + 1

c3
δ jk∂tU + O(c−5) , (8.15c)

�
j
00 = − 1

c2
∂ jU − 1

c4

(
4∂tU j + ∂ j� − 4U∂ jU

) + O(c−6) , (8.15d)

�
j
0k = 1

c3
δ jk∂tU − 2

c3

(
∂kU j − ∂ jUk

) + O(c−5) , (8.15e)

�
j
kn = 1

c2

(
δ jn∂kU + δ jk∂nU − δkn∂ jU

) + O(c−4) , (8.15f)

and making the substitution within Eq. (8.14), we obtain

dv j

dt
= ∂ jU + 1

c2

[
(v2 − 4U )∂ jU − (

4vk∂kU + 3∂tU
)
v j

− 4vk
(
∂ jUk − ∂kU j

) + 4∂tU j + ∂ j�

]
+ O(c−4) (8.16)
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when the particle is a massive body that moves slowly, so that v/c � 1. In the first term
we recognize the Newtonian acceleration field ∂ jU , and the remaining terms are post-
Newtonian corrections. The 1pn terms are suppressed by factors of order (v/c)2, vvc/c2,
or (vc/c)2, where v is the magnitude of the particle’s velocity, while vc is the characteristic
velocity scale of the matter distribution. For example ∂tU is of order vc relative to ∂ jU ,
and this is multiplied by v j/c2 in the equations of motion; the contribution is therefore of
order vvc/c2.

In the case of a photon we cannot take v to be much smaller than c, and the geodesic
equation permits an expansion in powers of vc/c only. The magnitude of v can be determined
from the lightlike condition gαβvαvβ = 0. To leading order in the post-Newtonian expansion
we find that (v/c)2 = 1 − 4U/c2, and this relation neglects terms of order vcU/c3. This
implies that v can be expressed as

v = c
(

1 − 2

c2
U

)
n + O(c−3), (8.17)

in terms of a unit vector n. This equation reveals that the coordinate velocity of a photon
deviates from c in curved spacetime. If we take v/c to be of order unity but continue to
treat vc/c as a small quantity, Eq. (8.14) produces

dv j

dt
=

(
1 + v2

c2

)
∂ jU − 4

c2
v jvk∂kU + O(c−3). (8.18)

The geodesic equation becomes

dn j

dt
= 2

c

(
δ jk − n j nk

)
∂kU + O(c−2) (8.19)

after making the substitution of Eq. (8.17). We note that the right-hand side of Eq. (8.19) is
orthogonal to n j ; this is as it should be, because n j dn j/dt = 1

2 d(n j n j )/dt = 0.

Box 8.1 Maxwell-like formulation of post-Newtonian theory

The main equations of post-Newtonian theory can be written in a form that displays a remarkable parallel
with the equations of electrodynamics. These consist of Maxwell’s equations,

∇ · E = 1

ε0
ρe,

∇ · B = 0,

∇ × E = −∂t B,

∇ × B = 1

c2

(
1

ε0
j e + ∂t E

)
,

which govern the behavior of the electric field E and magnetic field B in terms of the charge densityρe =
c−1 j0

e and the current density j e , and the Lorentz-force law

m
d(γ v)

dt
= q

(
E + v × B

)
,
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with γ = dt/dτ , which governs the behavior of a particle of mass m , charge q , and velocity v in the
electromagnetic field.
From the post-Newtonian metric (8.2), we first define a gravito-electric potential�g := − 1

2 c2(1 +
g00) = −U − c−2(� − U 2) + O(c−4) and a gravito-magnetic potential Ag with compo-
nents cg0 j = −4c−2U j + O(c−4). We next define a gravito-electric field Eg := −∇�g −
∂t Ag = ∇U + c−2(∇� − ∇U 2 + 4∂t U) and a gravito-magnetic field Bg := ∇ × Ag =
−4c−2∇ × U ; the relations between potentials and fields are the same as in electrodynamics. It is then
a simple matter to show that the field equations of post-Newtonian theory can be put in the Maxwell-like
form

∇̃ · Eg = −4πGρ∗
[

1 + 1

c2

(
3

2
v2 − 3U + 
 + 3p/ρ∗

)]
− 3

c2
∂t tU + O(c−4) ,

∇ · Bg = O(c−4) ,

∇ × Eg = −∂t Bg,

∇ × Bg = 4

c2

(
−4πGρ∗v + ∂t Eg

)
+ O(c−4) ,

where ∇̃ · Eg denotes a “curved-space” divergence (−g)−1/2∇[(−g)1/2 Eg], where −g = 1 +
2U/c2 + O(c−4) is the determinant of the post-Newtonian metric. It is also simple to show that the
geodesic equation acquires a Lorentz-like form

d(gsγ v)

dt
= γ

(
Eg + v × Bg + v2∇gs

)
+ O(c−4) , (1)

where gs := 1 + 2U/c2 is the coefficient of the spatial part of the pn metric, and γ := dt/dτ =
1 + c−2( 1

2v2 + U ) + O(c−4). This can be expressed in the more explicit form

d

dt

{[
1 + 1

c2

(1

2
v2 + 3U

)]
v

}
=

[
1 + 1

c2

(3

2
v2 − U

)]
Eg + v × Bg + O(c−4).

Apart from additional post-Newtonian terms, the equations are indeed remarkably similar to those of the
Maxwell–Lorentz theory, withρ∗ playing the role of the charge density,ρ∗v that of the current density, and
−4πG playing the role of the coupling constant 1/ε0.
There are, however, clear indications that gravity is different from electrodynamics. Apart from the addi-

tional post-Newtonian terms, themost important differences are seen in the sign of the coupling constant and
the factor of 4 in the∇ × Bg equation. The gravitational coupling constant−4πG is negative instead of
positive, reflecting the fact that in gravity, like charges attract instead of repel. The factor of 4 reminds us that
the gravitational potentials�g and Ag originate from a tensor (the metric) instead of a vector; in quantum
parlance we say that the graviton is a spin-2 particle, while the photon is a spin-1 particle. The Lorentz-like
equation would be identical to that of electrodynamics through O(c−2) were it not for the appearance of
the spatial part of themetric, represented by the factor gs and the extra factor ofγ on the right-hand-side of
Eq. (1), reflecting its true origin in the geodesic equation.
Nevertheless, the Maxwell-like formulation of the post-Newtonian approximation to Einstein’s equations

and the geodesic equation can be very useful in specific situations, particularly when some of the additional
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post-Newtonian terms can be neglected. This occurs, for example, when the fields are stationary, when non-
linear contributions (proportional to ρ∗U ) can be ignored, or when the velocity field inside the source is
particularly small. In such cases, solutions to the post-Newtonian equations can be imported with minimal
modifications fromelectrodynamics, alongwith theattached intuition. TheMaxwell-like formulationhasbeen
used to study everything from laboratory and space experiments to test general relativity to the behavior of
matter around rotating black holes.

8.2 Classic approach to post-Newtonian theory

Before we proceed with our exploration of post-Newtonian theory, it is instructive to provide
an alternative derivation of the metric based on the standard formulation of the Einstein
field equations instead of the Landau–Lifshitz formulation reviewed in Chapter 6. We refer
to this derivation as the classic approach to post-Newtonian theory, and our quick survey
will reveal some of the ambiguities and conceptual difficulties associated with it. The
modern approach to post-Newtonian theory, based on its post-Minkowskian foundation, is
completely free of such ambiguities and conceptual difficulties.

We begin by postulating a form of the metric to 1pn order:

g00 = −1 + 2

c2
U + 2

c4

(
� − U 2

) + O(c−6), (8.20a)

g0 j = − 4

c3
U j + O(c−5), (8.20b)

g jk =
(

1 + 2

c2
U

)
δ jk + O(c−4), (8.20c)

where U , U j , and � are gravitational potentials to be determined. The term of order c−2 in
g00 is a Newtonian term. The terms of order c−4 in g00, c−3 in g0 j , and c−2 in g jk are post-
Newtonian terms. The insertion of U 2 within g00 simplifies the form of the field equations.
A blind post-Newtonian expansion of g jk would introduce a general tensorial potential U jk

instead of the specific expression Uδ jk that involves the same potential U as in g00. To keep
the algebra simple, we anticipate the result of an integration of the Einstein field equations
at lowest order, which reveals that indeed, U jk must be equal to Uδ jk . (In fact, we have
reached this conclusion already in Sec. 5.5, when we studied the linearized approximation of
general relativity.) We impose a harmonic coordinate condition, as displayed in Eq. (6.47);
this reduces to

∂tU + ∂ jU
j = 0 (8.21)

at the required post-Newtonian order. Again we state that at the outset, U , U j , and � are
unknown functions to be determined by the field equations; apart from our assumption
regarding the tensorial potential, there is no loss of generality in Eq. (8.20).
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The standard formulation of the Einstein field equations is Gαβ = (8πG/c4)Tαβ , and
recalling the definition of the Einstein tensor from Eq. (5.71), this is

Rαβ − 1

2
Rgαβ = 8πG

c4
Tαβ, (8.22)

in which Rαβ is the Ricci tensor and R := gαβ Rαβ the Ricci scalar. Taking the trace yields
R = −(8πG/c4)T , in which T := gαβ Rαβ , and making the substitution back in the field
equations produces

Rαβ = 8πG

c4
T̄αβ, (8.23)

in which T̄αβ := Tαβ − 1
2 T gαβ is the “trace-reversed” energy-momentum tensor. This form

of the field equations is our starting point for the determination of the potentials U , U j ,
and �. It is advantageous because the computation of the Ricci tensor from the metric
of Eq. (8.20) is relatively straightforward. The computation of the Einstein tensor would
require additional steps and make the entire task more tedious.

A straightforward calculation using the Christoffel symbols of Eqs. (8.15) reveals that
the components of the Ricci tensor are

R00 = − 1

c2
∇2U + 1

c4

(
∂t tU + 4U∇2U − ∇2�

) + O(c−6) , (8.24a)

R0 j = 2

c3
∇2U j + O(c−5) , (8.24b)

R jk = − 1

c2
∇2Uδ jk + O(c−4) . (8.24c)

We have used Eq. (8.21) to eliminate terms involving ∂ jU j in favor of terms involving ∂tU .
Importing the components of the energy-momentum tensor from Eq. (8.7), we have that

T00 = ρ∗c2

[
1 + 1

c2

(1

2
v2 − 5U + 


)]
+ O(c−2) , (8.25a)

T0 j = −ρ∗v j c + O(c−1) , (8.25b)

Tjk = ρ∗v jvk + p δ jk + O(c−2), (8.25c)

to the required post-Newtonian order. To leading order this produces T̄00 = 1
2ρ∗c2 + O(1),

and the c−2 piece of the 00 component of the field equations yields

∇2U = −4πGρ∗ . (8.26)

We conclude that as expected, U is the standard Newtonian potential defined by Eq. (8.4).
Also to leading order, T̄ jk = 1

2δ jkρ
∗c2 + O(1), and we see that the c−2 piece of the jk

components of the field equations is automatically satisfied; this validates our assumed
form for the spatial part of the metric. The c−3 piece of the 0 j components of the field
equations yields

∇2U j = −4πGρ∗v j , (8.27)
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and U j is the standard vector potential as defined by Eq. (8.4). Finally, the c−4 piece of the
00 component of the field equations yields

∂t tU + 4U∇2U − ∇2� = 4πGρ∗
(

3

2
v2 − 5U + 
 + 3p

ρ∗

)
. (8.28)

This is a Poisson equation for �, and after substituting ∇2U = −4πGρ∗ on the left-hand
side and rearranging, we see that � is given by

� = ψ + 1

2
∂t t F , (8.29)

with ψ and F required to satisfy

∇2ψ = −4πGρ∗
(

3

2
v2 − U + 
 + 3p

ρ∗

)
, (8.30)

and

∇2 F = 2U . (8.31)

The solution to Eq. (8.30) is evidently the potential defined by Eq. (8.4b).
To identify the solution to Eq. (8.31) requires a more careful discussion, because the

source term 2U is not limited to the region occupied by the matter distribution; it is
distributed over all space. This discussion has already been provided in Box. 7.3, where it
was shown that the general solution is given by

F = X − 2mR + F0, (8.32)

in which X (t, x) is the standard superpotential as displayed in Eq. (8.4), m := ∫
ρ∗ d3x is

the total rest-mass of the fluid system, R is a constant length, and F0(t, x) is a solution to
Laplace’s equation. Demanding that F0 does not depend on time implies that ∂t t F = ∂t t X ,
so that � = ψ + ∂t t X as required by Eq. (8.3). Choosing F0 = 2mR returns the stronger
equality F = X , yielding the same expression for �.

The preceding discussion indicates that when appropriate choices are made, the solution
to Eq. (8.31) returns the correct expression for �, as given by Eq. (8.3). The main question
that arises is: which guiding principle can be invoked to justify the choices made to specify
this solution? The answer is simply that no such principle exists within the strict context
of the classic approach to post-Newtonian theory; the ambiguities associated with F can
only be resolved with ad hoc choices. For a more satisfying resolution, one must turn to the
modern approach and its post-Minkowskian foundation.

In the classic approach, the superpotential arises as a particular solution to ∇2 F =
2U , and the choice of solution is ambiguous because U extends over all space. (The
potentials U , U j , and ψ do not share this ambiguity, because their source terms are
tied to the matter distribution.) In the modern approach, the superpotential arises in an
expansion of h00 in powers of c−1 in the near zone, and it is fundamentally defined as the
integral

∫
ρ∗′|x − x′| d3x ′; the Poisson equation follows as a consequence of this definition.

The advantages of the modern approach should be clear. First, the post-Minkowskian
foundation provides a clear restriction of the post-Newtonian metric to the near zone,

cmw
Inserted Text
G

cmw
Inserted Text
G
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while no such restriction is immediately apparent in the classic approach. Second, while the
classic approach features Poisson equations with ambiguous solutions, the modern approach
defines all potentials in terms of near-zone integrals that are devoid of ambiguities.

A third advantage is concerned with the incorporation of retardation effects in the post-
Newtonian metric. Our experience with post-Minkowskian theory allows us to locate the
retardation in the ∂t t X term, but we would be hard pressed to provide this understanding
if we were only familiar with the classic approach. Indeed, because the classic approach
defines each potential in terms of a Poisson equation, each potential will necessarily be
instantaneous, and the retardation effects will be implicit and hidden from view. There is
actually a deeper problem that is revealed at higher post-Newtonian orders. A systematic
development of the classic approach to higher orders would continue to introduce potentials
that satisfy Poisson equations, and the ambiguities would pile up. In particular, it would
quickly become unclear how to impose a condition that the metric should describe outgoing
gravitational waves at infinity. Because the post-Newtonian expansion is necessarily limited
to the near-zone region of space, the wave zone is inaccessible, and the boundary conditions
cannot be formulated in a clean way. In the modern approach, the post-Minkowskian
formulation of the problem is based on wave equations instead of Poisson equations, and
the selection of retarded solutions ensures that the waves are properly outgoing in the
wave zone. It is this specific choice of solution that provides the retardation and makes the
near-zone metric completely unambiguous.

In his sequence of papers on post-Newtonian hydrodynamics written between 1964 and
1969, Chandrasekhar employed the classic approach outlined in this section to derive the
metric and the equations of motion. Working with his student Yavuz Nutku, he continued
to employ this method to obtain the 2pn equations of hydrodynamics. But when it came
time in 1970 to move on to the 2.5pn equations of motion, an order at which the selection
of outgoing-wave boundary conditions is essential, Chandra and his student Paul Esposito
finally recognized the limitations described here. They converted to the modern approach.

8.3 Coordinate transformations

8.3.1 Introduction

In this section we explore the freedom that post-Newtonian theory possesses to perform
coordinate transformations that preserve the post-Newtonian ordering of the metric. We
wish to find the most general class of transformations

t = t(t̄, x̄ j ), x j = x j (t̄, x̄ j ), (8.33)

that keeps the metric expressed as an expansion in powers of c−2. We call these post-
Newtonian transformations, and construct them step-by-step in Secs. 8.3.2 and 8.3.3.

We shall find that in general, the post-Newtonian transformations do not preserve the
harmonic coordinate condition of Eq. (8.21). In Sec. 8.3.4 we specialize them to a class that
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keeps the coordinates harmonic; we call this restricted class the harmonic transformations
of post-Newtonian theory. We describe a simple application of this formalism in Sec. 8.3.5,
in which we examine the Newtonian potential of a moving body in its own (non-inertial)
reference frame.

The post-Newtonian and harmonic transformations typically produce gravitational po-
tentials that contain spatially-growing terms, even when the original potentials vanish in
the formal limit r → ∞. In Sec. 8.3.6 we specialize them further by demanding that the
transformed potentials continue to vanish in the limit r̄ → ∞; this property defines what
is known as the post-Galilean transformations of post-Newtonian theory.

Within the post-Newtonian class of transformations there exists an interesting subclass
that corresponds very closely to the ordinary gauge transformations of electrodynamics. We
examine these in Sec. 8.3.7, and introduce the so-called standard gauge of post-Newtonian
theory. This was the gauge that was adopted by Chandrasekhar in his pioneering work on
the subject, and much of the older post-Newtonian literature is framed in this gauge. The
standard gauge, however, has become less popular of late, and the more recent literature is
uniformly cast in the harmonic gauge. We adhere to this choice in most of the book, but the
standard post-Newtonian gauge is featured in Chapter 13, in which we examine alternative
theories of gravity.

In this section we follow closely the treatment of post-Newtonian coordinate transfor-
mations developed by our friends Étienne Racine and Éanna Flanagan (2005). We recall
that under the transformation of Eq. (8.33), the components of the metric tensor change
according to

ḡ00 =
(

∂t

∂ t̄

)2

g00 + 2

c

∂t

∂ t̄

∂x j

∂ t̄
g0 j + 1

c2

∂x j

∂ t̄

∂xk

∂ t̄
g jk, (8.34a)

ḡ0 j = c
∂t

∂ t̄

∂t

∂ x̄ j
g00 +

(
∂t

∂ t̄

∂xk

∂ x̄ j
+ ∂xk

∂ t̄

∂t

∂ x̄ j

)
g0k + 1

c

∂xk

∂ t̄

∂xn

∂ x̄ j
gkn, (8.34b)

ḡ jk = c2 ∂t

∂ x̄ j

∂t

∂ x̄ k
g00 + c

(
∂t

∂ x̄ j

∂xn

∂ x̄ k
+ ∂xn

∂ x̄ j

∂t

∂ x̄ k

)
g0n + ∂xn

∂ x̄ j

∂x p

∂ x̄ k
gnp. (8.34c)

Our most important results are summarized in Box 8.2. The reader is invited to peruse the
summary before getting started with the details, so as to benefit from an overview of what
is to come.

Box 8.2 Post-Newtonian transformations

Themost general coordinate transformation that preserves the post-Newtonian ordering of themetric is given
by

t = t̄ + 1

c2
α(t̄, x̄ j ) + 1

c4
β(t̄, x̄ j ) + O(c−6),

x j = x̄ j + r j (t̄) + 1

c2
h j (t̄, x̄ j ) + O(c−4),
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where

α = A(t̄) + v j x̄
j ,

h j = H j (t̄) + H j
k(t̄)x̄ k + 1

2
H j

kn(t̄)x̄ k x̄ n,

with

Hjk = ε jkn Rn(t̄) + 1

2
v jvk − δ jk

(
Ȧ − 1

2
v2

)
,

Hjkn = −δ jkan − δ jnak + δkna j .

The functions A, r j , H j , and R j are freely specifiable functions of time t̄ , while β is a free function of
all the coordinates. The transformation is therefore characterized by ten arbitrary functions of time, and one
arbitrary function of all the coordinates. An overdot indicates differentiation with respect to t̄ , and we have
introduced v j := ṙ j and a j := v̇ j = r̈ j . In addition, we let v2 = δ jkv

jvk .
The transformation preserves the post-Newtonian ordering of the metric, but it does not necessarily keep

the coordinates harmonic. To preserve this also we must set

β = 1

6
Äδ jk x̄ j x̄ k + 1

30

(
δ jk ȧn + δ jnȧk + δknȧ j

)
x̄ j x̄ k x̄ n + γ (t̄, x̄ j ),

and γ is required to satisfy Laplace’s equation: ∇̄2γ = 0, with ∇̄2 denoting the Laplacian operator in the
coordinates x̄ j . The arbitrary functionβ has therefore been replaced by an arbitrary harmonic function γ .
Under a harmonic coordinate transformation the potentials become

Ū (t̄, x̄ j ) = Û − Ȧ + 1

2
v2 − a j x̄

j ,

Ū j (t̄, x̄ j ) = Û j − v j Û + 1

4

(
V j + V j

k x̄k + 1

2
V j

kn x̄k x̄n + ∂j̄ γ

)
,

�̄(t̄, x̄ j ) = �̂ − 4v j Û j + 2v2Û + (
A + vk x̄ k

)
∂t̄ Û

+
(

F j + F j
k x̄k + 1

2
F j

kn x̄k x̄n
)
∂j̄ Û

+ G + G j x̄
j + 1

2
G jk x̄ j x̄ k + 1

6
G jkn x̄ j x̄ k x̄n − ∂t̄γ,

where

V j = (2 Ȧ − v2)v j − Ḣ j + ε j
pqv

p Rq ,

V j
k = 3

2
v j ak + 1

2
a jvk + δ

j
k

(4

3
Ä − 2vnan

)
− ε

j
kp Ṙ p,

V j
kn = 6

5

(
δ

j
k ȧn + δ j

nȧk

) − 4

5
δknȧ j ,

(continued overleaf)
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F j = H j − Av j ,

F j
k = −δ

j
k

(
Ȧ − 1

2
v2

)
− 1

2
v jvk + ε

j
kp R p,

F j
kn = −(

δ
j
kan + δ j

nak

) + δkna j ,

G = 1

2
Ȧ2 − Ȧv2 + 1

4
v4 + Ḣ jv j ,

G j =
(

Ȧ − 1

2
v2

)
a j −

(
Ä − 3

2
vkak

)
v j − ε j pqv

p Ṙq ,

G jk = a j ak − v j ȧk − ȧ jvk + δ jk(vnȧn) − 1

3
δ jk Ä,

G jkn = −1

5

(
δ jk än + δ jnäk + δknä j

)
.

The “hatted” potentials are equal to the original potentials evaluated at time t = t̄ and position x j =
x̄ j + r j (t̄). For example,

Û (t̄, x̄ j ) := U
(
t = t̄, x j = x̄ j + r j (t̄)

)
.

BecauseU now possesses, in addition to its original explicit time dependence, an implicit time dependence
contained in r j (t̄), some care must be exercised when taking time derivatives. We have

∂Û

∂ t̄
= ∂U

∂t
+ v j ∂U

∂x j
,

∂Û

∂ x̄ j
= ∂U

∂x j
,

in which the right-hand-sides are evaluated at t = t̄ and x j = x̄ j + r j (t̄).

8.3.2 Newtonian transformations

We begin with a search for a coordinate transformation that preserves the form of the metric
at Newtonian order:

g00 = −1 + 2

c2
U + O(c−4), g0 j = O(c−3), g jk = δ jk + O(c−2). (8.35)

Specifically, we demand that the new metric takes the form

ḡ00 = −1 + 2

c2
Ū + O(c−4), ḡ0 j = O(c−3), ḡ jk = δ jk + O(c−2), (8.36)

with a new Newtonian potential Ū whose relation with the old one will be determined by
the transformation.

Inspecting Eq. (8.34a) first, we note that the leading term in ḡ00 will have the correct
value of −1 if and only if ∂t/∂ t̄ = 1 + O(c−2). Moving next to Eq. (8.34c), we see that ḡ jk

will contain unwanted terms of order c2 unless ∂t/∂ x̄ j = O(c−2). And the terms of order
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c0 will have the correct form if and only if

δ jk = ∂x p

∂ x̄ j

∂xq

∂ x̄ k
δpq + O(c−2). (8.37)

The Newtonian transformation must preserve the form of the spatial metric, and this means
that it must be the combination of a translation of the spatial origin with a rotation of the
coordinate axes: x j = r j + R j

k x̄k + O(c−2). Here r j (t̄) are arbitrary functions of time, and
R j

k(t̄) are the components of a rotation matrix that satisfies δpq R p
j Rq

k = δ jk . At this stage
of our considerations we conclude that the transformation must take the form

t = t̄ + 1

c2
α(t̄, x̄ j ) + O(c−4), x j = r j (t̄) + R j

k(t̄)x̄ k + O(c−2), (8.38)

where α is (for now) an arbitrary function of the new coordinates, and r j , R j
k are arbitrary

functions of time.
We next examine Eq. (8.34b), in which we make the substitutions of Eq. (8.38). After

simplification we notice that ḡ0 j will contain unwanted terms at order c−1 unless

∂j̄α = (
vk + Ṙk

n x̄n
)
Rk j ; (8.39)

an overdot indicates differentiation with respect to t̄ , and we introduced the notation
v j := ṙ j . The previously stated condition on the rotation matrix implies that Ṙk

n Rk j is
antisymmetric on n and j , and can therefore be expressed as Ṙk

n Rk j = εnjmωm(t) for some
vector ωm . The equation for α is now

∂j̄α = vk Rk j + ε jmnω
m x̄n , (8.40)

and we see that the final term cannot be written as the gradient of any function. To eliminate
the unwanted c−1 term in ḡ0 j we must therefore set ωm = 0, so that R j

k describes a
time-independent rotation of the coordinate axes. We choose to discard this uninteresting
coordinate freedom by setting

R jk = δ jk . (8.41)

The general solution for α is then

α = A(t̄) + v j (t̄)x̄
j , (8.42)

in which A is an arbitrary function of time t̄ . The Newtonian transformation of Eq. (8.38)
is now fully characterized.

Box 8.3 Rotating coordinates

By forcing ḡ0 j to vanish at order c−1, we are consciously excluding rotating coordinate systems from the
allowed class of post-Newtonian coordinates. To describe a purely rotating coordinate system, we would use
the transformation

t = t̄ + O(c−4), x j = R j
k(t̄)x̄ k + O(c−2) ,
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which leads to a metric of the form

ḡ00 = −1 + 2

c2
Ū + 1

c2

[
ω2 − (ω · n̄)2

]
r̄2 + O(c−4),

ḡ0 j = 1

c
(ω × x̄) j + O(c−3),

ḡ jk = δ jk + O(c−2),

where ω j (t) := 1
2ε jlm Ṙk

l Rkm and n̄ = x̄/r̄ . From a relativistic point of view, this metric presents a
number of problems. One of these is that it does not reduce to theMinkowskimetric when r̄ → ∞. An even
worse problem is that g00 vanishes whenωr̄ sin θ = c(1 − U/c2), where θ is the angle betweenω

and n̄. This “light cylinder” is a placewhere the speed of a particle at rest in the rotating frame equals the local
speed of light asmeasured in the global, non-rotating frame; particles at rest outside the light cylinder exceed
the local speed of light.
Other issues connected with the rotating frame include the inability to synchronize clocks consistently

around a circle at rest in this frame (the Sagnac effect, reviewed in Sec. 10.3.4), and the common miscon-
ception that the circumference of a rotating disk is shortened compared to 2π times its radius. These issues
have generated so much misunderstanding that in the general relativity textbook by H.P. Robertson and T.W.
Noonan (1968), there is a paragraph on this topic headed “That darned* rotating disk,” with the asterisk
indicating that the actual word selected by Robertson in his original lecture notes was much stronger!
As indicated in the text, we wish to preserve the post-Newtonian expansion of the metric, and therefore

exclude rotating coordinate systems from our considerations. This doesn’t mean, however, that rotating coor-
dinates are never appropriate. They can indeed be very useful, provided that one stays well within the light
cylinder. For example, a coordinate system that rotates with the Earth is an extremely powerful tool to de-
scribe post-Newtonian gravity in and around the Earth, including its effects on geocentric satellites, atomic
timekeeping, and the Global Positioning System. These applications are discussed in detail in Chapter 10.

To determine how the Newtonian potential changes under the transformation, we return to
Eq. (8.34a) and examine the terms of order c−2 after making the substitutions of Eq. (8.38).
After simplification we find that the right-hand side is given by −1 + 2c−2(U − ∂t̄α +
1
2v2) + O(c−4), where v2 := δ jkv

jvk . The new potential must therefore be Ū = U − ∂t̄α +
1
2v2. Here Ū is expressed in terms of the new coordinates (t̄, x̄ j ), but U is still written in
terms of the old coordinates (t, x j ). To make the equation more useful we should express
U as a function of the new coordinates. To achieve this we write

U (t, x j ) = U (t̄ + c−2α + · · · , x̄ j + r j + · · · ) (8.43)

and perform a Taylor expansion of the right-hand side about the point (t̄, x̄ j + r j ). This
gives U (t, x j ) = U (t̄, x̄ j + r j ) + O(c−2), and we find that the terms of order c−2 play no
role in the transformation of the Newtonian potential. (They do, however, appear in the
post-Newtonian transformation of the following subsection.)
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To distinguish clearly between the sets of arguments (t̄, x̄ j ), (t̄, x̄ j + r j ), and (t, x j ) we
introduce the “hatted” potential

Û (t̄, x̄ j ) := U (t̄, x̄ j + r j ). (8.44)

This is the original potential U evaluated at time t = t̄ and position x j = x̄ j + r j (t̄). In
terms of this we have

U (t, x j ) = Û (t̄, x̄ j ) + O(c−2) (8.45)

and the transformed potential is Ū = Û − ∂t̄α + 1
2v2. Using Eq. (8.42), this is

Ū = Û − Ȧ + 1

2
v2 − a j x̄

j , (8.46)

where a j := v̇ j = r̈ j . All members of this equation are functions of the new coordinates
(t̄, x̄ j ).

When it is expressed in terms of U as in Eq. (8.44), the hatted potential Û possesses both
an explicit and an implicit dependence upon the time coordinate t̄ . The explicit dependence
is contained in U ’s temporal argument, while the implicit dependence appears via r j (t̄)
in the spatial arguments. Some care must therefore be exercised when computing partial
derivatives. We have, for example,

∂Û

∂ t̄
=

(
∂U

∂t
+ v j ∂U

∂x j

)
t=t̄, x=x̄+r

, (8.47)

in which the substitutions t = t̄ , x j = x̄ j + r j (t̄) are made after differentiating U with
respect to its original variables t and x j . Spatial derivatives, on the other hand, are given
simply by

∂Û

∂ x̄ j
=

(
∂U

∂x j

)
t=t̄, x=x̄+r

. (8.48)

8.3.3 Post-Newtonian transformations

To proceed to the next order we write the coordinate transformation as

t = t̄ + 1

c2
α(t̄, x̄ j ) + 1

c4
β(t̄, x̄ j ) + O(c−6), (8.49a)

x j = x̄ j + r j (t̄) + 1

c2
h j (t̄, x̄ j ) + O(c−4), (8.49b)

where α is given by Eq. (8.42), while β and h j represent the additional coordinate freedom
that appears at 1pn order.

The function β will remain arbitrary. To constrain h j we examine the O(c−2) terms on
the right-hand-side of Eq. (8.34c) and demand that, in accordance with Eq. (8.20), they be
equal to 2Ūδ jk . With Eqs. (8.45) and (8.46), we find after simplification that h j must be a
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solution to the differential equation

∂j̄ hk + ∂k̄h j = −2δ jk

(
Ȧ − 1

2
v2 + an x̄n

)
+ v jvk . (8.50)

The general solution to this equation is the sum of a particular solution and the general
solution to the homogeneous equation ∂j̄ hk + ∂k̄h j = 0. (The expert will recognize this as
Killing’s equation in a flat, three-dimensional space.)

The form of the homogeneous equation reveals that h j
hom must be linear in the coordi-

nates: h j
hom = H j + A j

k x̄k , where H j and A j
k are functions of t̄ . Substitution within the

differential equation reveals that H j (t̄) is arbitrary, but that A jk must be an antisymmetric
tensor. Such a tensor contains three independent components, and we can always express it
as A jk = ε jkn Rn , in terms of a vector Rn that also contains three independent components.
We have obtained h j

hom = H j (t̄) + ε
j
kn x̄ k Rn(t̄). The first term represents a translational

component to the coordinate transformation, which combines with the Newtonian transla-
tion to form the total translation r j + c−2 H j . The second term represents a rotation of the
coordinate axes, and the rotation matrix is R j

k = c−2ε
j
kn Rn .

The form of the inhomogeneous equation reveals that a particular solution h j
part will

be quadratic in the coordinates. We adopt B jk x̄k + 1
2 B jkn x̄k x̄n as a trial solution, and

observe that B jkn can be chosen to be symmetric in the last pair of indices. Substitution
within the differential equation shows that B jk is constrained by B jk + Bk j = −2δ jk( Ȧ −
1
2v2) + v jvk , while B jkn is constrained by B jkn + Bk jn = −2δ jkan . The solutions are readily
identified as B jk = −δ jk( Ȧ − 1

2v2) + 1
2v jvk and B jkn = −δ jkan − δ jnak + δkna j .

Collecting results, we write our final expression for h j = h j
hom + h j

part as

h j = H j (t̄) + H j
k(t̄)x̄ k + 1

2
H j

kn(t̄)x̄ k x̄n, (8.51)

with

Hjk = ε jkn Rn(t̄) + 1

2
v jvk − δ jk

(
Ȧ − 1

2
v2

)
, (8.52a)

Hjkn = −δ jkan − δ jnak + δkna j . (8.52b)

This piece of the coordinate transformation involves the six arbitrary functions of time that
are contained in H j (t̄) and R j (t̄).

To determine how the vector potential U j transforms under the post-Newtonian transfor-
mation of Eqs. (8.49), we make the substitutions in Eq. (8.34) and demand that g0 j keeps its
post-Newtonian form of −4c−3U j + O(c−5). A careful evaluation of Eq. (8.34b) reveals
that the new vector potential Ū j is given by

4Ū j = 4(Û j − v j Û ) + ∂j̄β + v j∂t̄α − vk∂j̄ hk − ∂t̄ h j , (8.53)

in which Û j is defined by analogy with Eq. (8.44). Taking into account Eqs. (8.42) and
(8.51), we finally arrive at

Ū j = Û j − v j Û + 1

4

(
Vj + Vjk x̄k + 1

2
Vjkn x̄k x̄n + ∂j̄β

)
, (8.54)
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with

Vj = (2 Ȧ − v2)v j − Ḣ j + ε j pqv
p Rq , (8.55a)

Vjk = 3

2
v j ak + 1

2
vka j + δ jk

(
Ä − 2vnan

) − ε jkp Ṙ p, (8.55b)

Vjkn = δ jk ȧn + δ jn ȧk − δknȧ j . (8.55c)

We are now ready to derive the transformation equation for the post-Newtonian potential
�. We proceed along the same lines as for the vector potential, but before we begin we must
recover the O(c−2) terms that were discarded back in Eq. (8.45); these were not needed
previously, but they appear in the transformed version of g00 at order c−4. If we write
U (t, x j ) as U (t̄ + c−2α + · · · , x̄ j + r j + c−2h j + · · · ) and expand to first order in c−2,
we obtain

U (t, x j ) = Û + 1

c2
α
(
∂t̄ Û − v j∂j̄ Û

)
+ 1

c2
h j∂j̄ Û + O(c−4); (8.56)

the right-hand side is expressed as a function of (t̄, x̄ j ), and we have used Eqs. (8.47) and
(8.48) to relate the partial derivatives of U to those of Û . After substitution of Eq. (8.49)
into Eq. (8.34a) we find that the new post-Newtonian potential must be given by

�̄ = �̂ + 2v2Û + α∂t̄ Û + (h j − αv j )∂j̄ Û − 4v j Û
j

+ 1

2
(∂t̄α)2 − v2∂t̄α + 1

4
v4 − ∂t̄β + v j∂t̄ h

j . (8.57)

After taking into account Eqs. (8.42) and (8.51), we finally arrive at

�̄ = �̂ − 4v j Û
j + 2v2Û + (

A + vk x̄ k
)
∂t̄ Û +

(
F j + F j

k x̄k + 1

2
F j

kn x̄k x̄n
)
∂j̄ Û

+ G + G j x̄
j + 1

2
G jk x̄ j x̄ k − ∂t̄β, (8.58)

with

F j = H j − Av j , (8.59a)

F j
k = −δ

j
k

(
Ȧ − 1

2
v2

)
− 1

2
v jvk + ε

j
kp R p, (8.59b)

F j
kn = −(

δ
j
kan + δ j

nak

) + δkna j , (8.59c)

G = 1

2
Ȧ2 − Ȧv2 + 1

4
v4 + Ḣ jv j , (8.59d)

G j =
(

Ȧ − 1

2
v2

)
a j −

(
Ä − 3

2
vkak

)
v j − ε j pqv

p Ṙq , (8.59e)

G jk = a j ak − v j ȧk − ȧ jvk + δ jk(vnȧn). (8.59f)

The hatted potential �̂ is defined by analogy with Eq. (8.44).
Our task of constructing the most general coordinate transformation that preserves the

post-Newtonian form of the metric is now complete. At Newtonian order the transformation
is characterized by an arbitrary translation r j (t̄) and a shift α = A(t̄) + v j (t̄)x̄ j of the time
coordinate at order c−2. At post-Newtonian order the transformation involves an additional
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component H j (t̄) to the translation, as well as a rotation governed by the vector R j (t̄). In
addition, the transformation involves an arbitrary shift β(t̄, x̄ j ) of the time coordinate at
order c−4. All in all we have ten arbitrary functions of time, and one free function β of all
the coordinates. The transformed potentials Ū , Ū j , and �̄ are obtained from the old ones
by employing Eqs. (8.46), (8.54), and (8.58), respectively.

8.3.4 Harmonic transformations

The general transformation of the preceding subsection does not, in general, preserve the
harmonic condition of Eq. (8.21). It is possible, however, to specialize β(t̄, x̄ j ) so that we
also have

∂t̄ Ū + ∂j̄ Ū j = 0 (8.60)

in the new coordinates. This restriction of the coordinate freedom defines what we shall
call the class of harmonic coordinate transformations.

In view of Eq. (8.47) we find that the harmonic condition is

∂t̄ Û − v j∂j̄ Û + ∂j̄ Û j = 0 (8.61)

when it is expressed in terms of the hatted potentials. If we substitute Eqs. (8.46) and (8.54)
into Eq. (8.60) and make use of Eq. (8.61), we find that the harmonic condition is preserved
when β satisfies the Poisson equation

∇̄2β = Ä + ȧ j x̄
j . (8.62)

Here ∇̄2 is the Laplacian operator in the coordinates x̄ j . The general solution to this
equation is the sum of a particular solution and the general solution to Laplace’s equa-
tion. The particular solution must be cubic in the coordinates, and we construct it
with the help of the ansatz 1

2 C jk x̄ j x̄ k + 1
6 C jkn x̄ j x̄ k x̄n , in which C jk and C jkm de-

pend on t̄ and are completely symmetric tensors. This property and the differen-
tial equation imply that C jk = 1

3δ jk Ä and C jkn = 1
5 (δ jk ȧn + δ jn ȧk + δknȧ j ). We have

obtained

β = 1

6
Äδ jk x̄ j x̄ k + 1

30

(
δ jk ȧn + δ jn ȧk + δknȧ j

)
x̄ j x̄ k x̄n + γ (t̄, x̄ j ), (8.63)

where γ is any harmonic function that satisfies ∇̄2γ = 0.
Making the substitution in Eqs. (8.46), (8.54), and (8.58), we obtain the results listed in

Box 8.2. [Note that the expressions for Vjk , Vjkn , G jk , and G jkn that appear in the Box
are different from those given by Eqs. (8.55) and (8.59). The differences are accounted for
by the terms generated by ∂j̄β and ∂t̄β.] The transformation is still characterized by the
ten arbitrary functions of time that are contained in A(t̄), r j (t̄), H j (t̄), and R j (t̄), but the
remaining freedom is now restricted to a harmonic function γ (t̄, x̄ j ).
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8.3.5 Comoving frame of a moving body

The general post-Newtonian transformations, and the restricted class of harmonic trans-
formations, contain an enormous amount of freedom, and the transformations introduce
spatially-growing terms in the potentials. For example, the transformation of the Newtonian
potential is

Ū = Û − Ȧ + 1

2
v2 − a j x̄

j , (8.64)

and the last term grows linearly with r̄ . Similarly, Ū j contains terms that grow like r̄2, and
in the harmonic case, �̄ grows like r̄3. In view of this situation, a natural question to ponder
is: what purpose is there in all this coordinate freedom?

We shall have occasion to give a more complete answer to this question in Sec. 9.4, but
here we consider a simple application of the formalism that should illustrate its usefulness.
We consider a spherical body of mass m whose center-of-mass it situated at x j = r j (t) in
an inertial frame of reference. The body creates a gravitational potential Ubody, and it is
surrounded by an external matter distribution that creates a potential Uext. The total potential
is U = Ubody + Uext, and we wish to examine its form in the non-inertial frame attached to
the moving body. The coordinate transformation is given by t = t̄ + c−2α + O(c−4) and
x j = x̄ j + r j (t̄) + O(c−2), with α = A(t̄) + v j x̄ j .

In the original (inertial) coordinates we have that the potential outside the body is given
by

Ubody = Gm

|x − r(t)| . (8.65)

To simplify its expression we expand the external potential in a Taylor series about x j =
r j (t):

Uext = U (t, r j ) + (x − r ) j∂ jUext(t, r j ) + 1

2
(x − r ) j (x − r )k∂ jkUext(t, r j ) + · · · (8.66)

The hatted potentials are

Ûbody = Gm

r̄
(8.67)

and

Ûext = Uext(t̄, r j ) + x̄ j∂ jUext(t̄, r j ) + 1

2
x̄ j x̄ k∂ jkUext(t̄, r j ) + · · · (8.68)

We see that the total potential Û = Ûbody + Ûext naturally contains growing terms that are
associated with the external matter, in addition to the decaying term that is associated with
the reference body. Note that after each differentiation, the external potential is evaluated
at t = t̄ and x j = r j (t̄).

The transformed potential in the comoving frame of the body is Ū = Ūbody + Ūext, with

Ūbody = Gm

r̄
(8.69)
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and

Ūext =
[

Uext(t̄, r j ) − Ȧ + 1

2
v2

]
+ x̄ j

[
a j − ∂ jUext(t̄, r j )

]

+ 1

2
x̄ j x̄ k∂ jkUext(t̄, r j ) + · · · (8.70)

We simplify this by first exploiting the coordinate freedom, which allows us to set

Ȧ = 1

2
v2 + Uext(t̄, r j ); (8.71)

this is a differential equation that determines A(t̄) up to an uninteresting constant of
integration. We also make use of the fact that our body moves according to the Newtonian
equations of motion, so that

a j = ∂ jUext(t̄, r j ). (8.72)

We recall that a j stands for d2r j/dt̄2.
Our end result for the comoving-frame gravitational potential is

Ū = Gm

r̄
+ Ūtidal, (8.73)

where

Ūtidal = 1

2
x̄ j x̄ k∂ jkUext(t̄, r j ) + · · · (8.74)

is what remains of the external potential. As its label indicates, it is this potential that
is responsible for the tidal interaction between the moving body and the external matter
distribution. The Newtonian physics of tidally deformed bodies was explored in some detail
in Sec. 2.5.

The coordinate transformation that takes us from the inertial frame to the moving frame
is

t = t̄ + 1

c2

∫ [1

2
v2 + Uext(t̄, r j )

]
dt̄ + 1

c2
v j (t̄)x̄

j + O(c−4) (8.75)

and

x j = x̄ j + r j (t̄) + O(c−2). (8.76)

The transformation can of course be generalized to post-Newtonian order, and we go
through this exercise in Sec. 9.4.

8.3.6 Post-Galilean transformations

As we have seen, it can prove useful to exploit the full freedom contained in the general
post-Newtonian transformations, or the restricted class of harmonic transformations, when
one considers a bounded domain of spacetime such as the neighborhood of a moving body.
When the considerations are global, however, the general freedom is too vast, and one
would like to constrain it so as to eliminate the spatially-growing terms in the potentials. In
this section we assume that the original potentials U , U j , and � vanish in the formal limit
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r → ∞, and we specialize the post-Newtonian transformations so that the new potentials Ū ,
Ū j , and �̄ share this property. This restricted class of coordinate transformations is known
as the post-Galilean transformations of post-Newtonian theory. The name was coined by
Chandrasekhar and Contopoulos in their classic 1967 paper.

Construction

Inspection of Eq. (8.46) reveals that the Newtonian potential will grow linearly with r̄ unless
a j = 0. Discarding an uninteresting constant translation of the coordinates, this means that
r j (t̄) must be of the form

r j = V j t̄, (8.77)

with V j a constant vector. To eliminate the spatially-constant term in Ū we must also set
Ȧ = 1

2 V 2, so that

A = 1

2
V 2 t̄ . (8.78)

Here V 2 := δ jk V j V k , and we again discard an uninteresting integration constant. These
results imply that the post-Galilean transformation leaves the Newtonian potential invariant:

Ū = Û , (8.79)

where Û = U (t̄, x̄ j + V j t̄).
Our results can be used to simplify the general expression for Ū j , as it appears in

Eq. (8.54). To keep Ū j from growing we must set Ṙ j = 0. The rotation of the coordinate
axes described by R j (t̄) must therefore be constant in time, and we choose to eliminate this
uninteresting freedom by setting

R j = 0. (8.80)

To eliminate the spatially-constant term in Ū j we set ∂j̄β = Ḣ j , which integrates to
β = β0(t̄) + Ḣ j x̄ j , where β0 and H j are arbitrary functions of time. We observe that β is a
harmonic function, and that its expression is compatible with Eq. (8.63); the transformation
is therefore within the class of harmonic transformations. With this result we find that the
vector potential transforms as

Ū j = Û j − V jÛ (8.81)

under a post-Galilean transformation.
Moving on to �̄, as it appears in Eq. (8.58), we find that the removal of the growing term

requires Ḧ j = 0, so that Ḣ j must be a constant vector. This vector is in principle arbitrary,
but we choose to restrict the coordinate freedom by making it proportional to V j . We write
it as Ḣ j = 1

2 V 2V j , inserting an arbitrary numerical coefficient of 1
2 for reasons that will

be made clear below, and the factor of V 2 for proper dimensionality. Our choice for H j (t̄)
is therefore

H j = 1

2
V 2V j t̄ . (8.82)
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To eliminate the spatially-constant term in �̄ we must set β̇0 = − 1
8 V 4 + Ḣ j V j . With our

previous choice for H j this is β̇0 = 3
8 V 4, and our final expression for β is

β = 3

8
V 4 t̄ + 1

2
V 2Vj x̄

j . (8.83)

With all this we find that the post-Newtonian potential transforms as

�̄ = �̂ − 4VjÛ
j + 2V 2Û +

(
1

2
V 2 t̄ + Vj x̄

j

)
∂t̄ Û −

(
1

2
V j Vk x̄k

)
∂j̄ Û (8.84)

under a post-Galilean transformation. We note that the terms involving ∂t̄ Û and ∂j̄ Û
are multiplied by quantities that grow linearly with r̄ . Because Û decays as r̄−1, and its
derivatives as r̄−2, we see that �̄ properly vanishes in the formal limit r̄ → ∞.

Collecting results, we find that the post-Galilean transformation is a three-parameter
family described by

t =
(

1 + 1

2

V 2

c2
+ 3

8

V 4

c4

)
t̄ + 1

c2

(
1 + 1

2

V 2

c2

)
Vj x̄

j + O(c−6), (8.85a)

x j =
(

δ
j
k + 1

2

V j Vk

c2

)
x̄ k +

(
1 + 1

2

V 2

c2

)
V j t̄ + O(c−4); (8.85b)

the parameters are the three components of the vector V j . This is nothing but a Lorentz
transformation expanded in powers of (V/c)2. The coordinates (t̄, x̄ j ) define a frame S̄ that
is boosted with respect to the original frame S; the boost takes place in the direction of the
velocity vector V j .

Boosted potentials

In the foregoing discussion the boosted potentials Ū , Ū j , and �̄ were expressed in terms of
the “hatted potentials” Û , Û j , and �̂; these, we recall, are the original potentials evaluated at
time t = t̄ and position x j = x̄ j + V j t̄ . This representation of the transformed potentials
was optimal in the context of the general theory of post-Newtonian transformations, as
developed in the previous sections. It is not optimal in the restricted context of post-Galilean
transformations, because of the schizophrenic nature of the hatted potentials, which live
partly in the frame S and partly in the frame S̄. An indication that the representation is
indeed not optimal comes from our previous expression for �̄, which displays a curious
and unwanted explicit dependence upon t̄ and x̄ j .

We therefore proceed differently. We shall (i) postulate plausible expressions for the
transformed potentials Ū , Ū j , and �̄; (ii) relate these to the original potentials U , U j , and
�; and (iii) show that under the transformation of Eqs. (8.85), the transformed metric ḡαβ

keeps the standard post-Newtonian form of Eq. (8.20), with the understanding that the new
metric is expressed in terms of the new potentials.
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Our proposed expressions for the transformed potentials are

Ū (t̄, x̄) = G

∫
ρ̄∗(t̄, x̄′)
|x̄ − x̄′| d3 x̄ ′, (8.86a)

Ū j (t̄, x̄) = G

∫
ρ̄∗v̄ j (t̄, x̄′)
|x̄ − x̄′| d3 x̄ ′, (8.86b)

ψ̄(t̄, x̄) = G

∫
ρ̄∗( 3

2 v̄2 − Ū + 
̄ + 3 p̄/ρ̄∗)(t̄, x̄′)
|x̄ − x̄′| d3 x̄ ′, (8.86c)

X̄ (t̄, x̄) = G

∫
ρ∗(t̄, x̄′)|x̄ − x̄′| d3 x̄ ′, (8.86d)

and the transformed post-Newtonian potential is �̄ = ψ̄ + 1
2∂t̄ t̄ X̄ . These expressions are

natural: the new potentials are defined just as the old potentials in terms of the boosted
coordinates and the fluid variables ρ̄∗, p̄, 
̄, and v̄ that would be measured in the frame
S̄ instead of the original frame S. It is useful to introduce transformed versions of the
auxiliary potentials listed in Eqs. (8.8); in terms of these we have �̄ = 2�̄1 − �̄2 + �̄3 +
4�̄4 − 1

2 �̄5 − 1
2 �̄6.

Our first task is to express the old Newtonian potential U (t, x) in terms of the new
potentials. This is not entirely straightforward. A major source of subtlety is the important
fact that in Eqs. (8.86), the integration variables x̄′ describe the position of a fluid element
at time t̄ , the same time at which the potentials are being evaluated. The spacetime events
P and P ′, respectively labeled by the coordinates (t̄, x̄) and (t̄, x̄′), are simultaneous in
the frame S̄. But they are not simultaneous in the original frame S, and we must take this
property carefully into account.

We examine the situation in the original frame S (see Fig. 8.1). The figure shows a
spacetime diagram in which we display the field point P as well as the world line of a
selected fluid element. Two events are shown on this world line: the source point Q′ is
simultaneous with P in the frame S, while P ′ is simultaneous with P in the frame S̄.
In the frame S the coordinates of P are (t, x), the coordinates of Q′ are (t, x′), and the
coordinates of P ′ are (τ, ξ ). In the frame S̄ the coordinates of P are (t̄, x̄), the coordinates
of Q′ are (τ̄ , ξ̄ ), and the coordinates of P ′ are (t̄, x̄′). Note that the coordinates (τ, ξ ) and
(τ̄ , ξ̄ ) refer to different events in spacetime. In the frame S the world line is described by
the time-dependent position vector r; we have that x′ := r(t) and ξ := r(τ ). In the frame
S̄ the world line is described by r̄ , and we have that x̄′ := r̄(t̄) and ξ̄ := r̄(τ̄ ). In the frame
S the velocity of the fluid element at Q′ is v′ := ṙ(t), while in S̄ the velocity of the fluid
element at P ′ is v̄′ := ˙̄r(t̄); the overdots indicate differentiation with respect to the relevant
time variable.

The coordinates of the field point P transform as in Eq. (8.85). The coordinates of the
source point Q′ transform as

t =
(

1 + 1

2

V 2

c2
+ 3

8

V 4

c4

)
τ̄ + 1

c2

(
1 + 1

2

V 2

c2

)
Vj ξ̄

j + O(c−6), (8.87a)

x ′ j =
(

δ
j
k + 1

2

V j Vk

c2

)
ξ̄ k +

(
1 + 1

2

V 2

c2

)
V j τ̄ + O(c−4). (8.87b)
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P

P′

ct

x

y

Q′

Fig. 8.1 World line of a selected fluid element viewed in the frame S. The grey plane is a hypersurface t = constant, and the
white plane is a hypersurface t̄ = constant. The field point P is simultaneous with Q′ in S, but it is simultaneous with
P′ in the frame S̄.

We want to express x′ in terms of t̄ , x̄, and x̄′, and this requires elimination of τ̄ and ξ̄

from Eqs. (8.87b). To achieve this we equate the t of Eqs. (8.85) with the t of Eqs. (8.87)
and deduce that τ̄ = t̄ + c−2Vj (x̄ − ξ̄ ) j + O(c−4). We substitute this into the world-line
equation ξ̄ = r̄(τ̄ ) and get ξ̄ j = x̄ ′ j + c−2v̄′ j Vk(x̄ − ξ̄ )k + O(c−4). Collecting results, we
have obtained

τ̄ = t̄ + Vk

c2
(x̄ − x̄ ′)k + O(c−4), (8.88a)

ξ̄ j = x̄ ′ j + v′ j Vk

c2
(x̄ − x̄ ′)k + O(c−4). (8.88b)

These are the coordinates of Q′ in the frame S̄, expressed in terms of the coordinates of
both P and P ′. Making the substitution in Eq. (8.87b), we arrive at

x ′ j = x̄ ′ j + V j t̄ + 1

c2

(
v̄′ j + V j

)
Vk(x̄ − x̄ ′)k + V j

2c2

(
V 2 t̄ + Vk x̄ ′k) + O(c−4), (8.89)

the desired relation between x′ and the coordinates of P and P ′ in the frame S̄. To this
equation we can adjoin

v′ j = v̄′ j + V j + O(c−2), (8.90)
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the law of composition of velocities (truncated to the leading, Newtonian order). It follows
from Eqs. (8.85) and (8.89) that

1

|x − x′| = 1

|x̄ − x̄′| + 1

c2

(
v̄′

j Vk + 1

2
Vj Vk

) (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 + O(c−4), (8.91)

and this is an important ingredient that enters the transformation of the Newtonian
potential.

Another important ingredient is the statement that ρ∗d3x is invariant under the post-
Galilean transformation. We express this as

ρ∗(t, x′) d3x ′ = ρ̄∗(t̄, x̄′) d3 x̄ ′. (8.92)

The invariance of dm := ρ∗d3x reflects the simple fact that dm is the conserved rest-mass
of a fluid element. Because this cannot be altered by a coordinate transformation, we have
that dm(Q′) = dm̄(Q′), or dm(t, x′) = dm̄(τ̄ , ξ̄ ). And because dm̄ does not change as we
follow the motion of the fluid element, we also have that dm̄(Q′) = dm̄(P ′), or dm̄(τ̄ , ξ̄ ) =
dm̄(t̄, x̄′). We therefore arrive at Eq. (8.92), which is just the combined statement that
dm(Q′) = dm̄(P ′).

More formally, dm(Q′) = dm̄(Q′) is a consequence of the facts that (i) the proper mass
density ρ is a scalar quantity; (ii) the spacetime volume element

√−gdtd3x is invariant
under a coordinate transformation; and (iii) the element of proper time dλ along the
world line also is an invariant. From all this it follows that ρ

√−g(dt/dλ)d3x =: ρ∗ d3x
is invariant under the transformation. On the other hand, that dm̄(Q′) = dm̄(P ′) follows
formally from an application of the continuity equation, Eq. (7.3), to a single fluid element.
The formal route also gives rise to the statement of Eq. (8.92).

When we substitute Eqs. (8.91) and (8.92) into the integral definition of the old Newtonian
potential U (t, x), we find that it can be expressed in terms of the new potentials as

U =
(

1 + V 2

2c2

)
Ū + V j

c2
�̄ j − V j V k

2c2
∂ j̄ k̄ X̄ + O(c−4). (8.93)

Here �̄ j is the transformed version of the auxiliary potential defined by Eq. (8.8), and we
make use of the identity of Eq. (8.11).

The remaining potentials transform in an analogous way. In fact, their transformation
properties are much easier to identify, because here we do not need to calculate the correction
terms of order c−2; these impact the metric beyond the first post-Newtonian order. Taking
into account Eq. (8.90) and the fact that p and 
 transform as scalar quantities, we quickly
obtain

U j = Ū j + V jŪ + O(c−2), (8.94)
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as well as

�1 = �̄1 + 2V jŪ j + V 2Ū + O(c−2), (8.95a)

�2 = �̄2 + O(c−2), (8.95b)

�3 = �̄3 + O(c−2), (8.95c)

�4 = �̄4 + O(c−2), (8.95d)

�5 = �̄5 + O(c−2), (8.95e)

�6 = �̄6 + 2V j�̄ j + V 2Ū − V j V k∂ j̄ k̄ X̄ + O(c−2). (8.95f)

These equations imply that the post-Newtonian potential transforms as

� = �̄ + V j
(
4Ū j − �̄ j

) + 3

2
V 2Ū + 1

2
V j V k∂ j̄ k̄ X̄ + O(c−2) (8.96)

under a post-Galilean transformation.
Our final task is to verify that the transformed metric ḡαβ takes the standard post-

Newtonian form of Eq. (8.20) when it is expressed in terms of the transformed potentials
Ū , Ū j , and �̄. This is straightforward. We first specialize the general transformation
equations (8.34) to the post-Galilean case of Eqs. (8.85) and get the components ḡ00 =
−1 + 2c−2U + 2c−4(� − U 2 − 4V jU j + 2V 2U ) + O(c−6), ḡ0 j = −4c−3(U j − VjU ) +
O(c−5), and ḡ jk = δ jk(1 + 2c−2U ) + O(c−4) for the new metric tensor. This is still ex-
pressed in terms of the old potentials, and we complete the calculation by involving
Eqs. (8.93), (8.94), and (8.96). Our final result is

ḡ00 = −1 + 2

c2
Ū + 2

c4

(
�̄ − Ū 2

) + O(c−6), (8.97a)

ḡ0 j = − 4

c3
Ū j + O(c−5), (8.97b)

ḡ jk =
(

1 + 2

c2
Ū

)
δ jk + O(c−4), (8.97c)

the statement that the transformed metric does indeed take the standard post-Newtonian
form in terms of the proposed new potentials of Eqs. (8.86).

This completes our discussion of post-Galilean transformations. To sum up, we have
established that a post-Galilean transformation describes a boost from a frame S to a new
frame S̄ that moves relative to S with a constant velocity V . In this new frame the metric
keeps its standard post-Newtonian form, but the potentials are now defined by Eqs. (8.86);
they refer to the fluid variables ρ̄∗, p̄, 
̄, and v̄ that are measured in the new frame.

8.3.7 Pure-gauge transformations

Another interesting subclass of post-Newtonian transformations is obtained by setting

A = r j = H j = R j = 0 (8.98)
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and retaining only the freedom contained in β. This class of transformations is described
by

t = t̄ + 1

c4
β(t̄, x̄ j ) + O(c−6), (8.99a)

x j = x̄ j + O(c−4), (8.99b)

and the potentials change according to

Ū = U, (8.100a)

Ū j = U j + 1

4
∂j̄β, (8.100b)

�̄ = � − ∂t̄β. (8.100c)

In this case we no longer need to distinguish between the hatted potentials and their
original expressions. Equations (8.100) take the appearance of an electromagnetic-type
gauge transformation that links the potentials U j and �. We refer to this subclass of
transformations as the pure-gauge transformations of post-Newtonian theory. When β is
a harmonic function, the gauge transformation converts a set of harmonic coordinates to
another set of harmonic coordinates.

The transformation may be exploited to remove the superpotential term from g00 and
put it instead in g0 j . We refer to the decomposition of Eq. (8.2), and to eliminate the term
1
2∂t t X from g00 we choose

β = 1

2
∂t̄ X. (8.101)

Note that this is not a harmonic function (because ∇2 X = 2U ), so that the transformation
does not preserve the harmonic coordinate condition. With this expression for β we find
that the new metric is given by

ḡ00 = −1 + 2

c2
U + 2

c4

(
ψ − U 2

) + O(c−6), (8.102a)

ḡ0 j = − 4

c3
U j − 1

2c3
∂t̄ j̄ X + O(c−5), (8.102b)

ḡ jk =
(

1 + 2

c2
U

)
δ jk + O(c−4). (8.102c)

This choice of coordinate system defines the so-called standard gauge of post-Newtonian
theory. As we have pointed out in the introductory section, this choice of gauge was
popularized by Chandrasekhar, and it was once widely utilized by researchers in the post-
Newtonian community. Like most current workers in the field, however, we prefer to use the
harmonic gauge, and we have made this choice consistently throughout the book, except
in Chapter 13 where we examine alternative theories of gravity. To be sure, the choice of
gauge is mostly a matter of taste and convenience. But there are, nevertheless, important
advantages in using the harmonic coordinates: it is in this gauge that post-Newtonian theory
can naturally be embedded within the wider context of post-Minkowskian theory. And as
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we explained back in Sec. 8.2, it is by doing this that the foundations of post-Newtonian
theory can be made secure.

8.4 Post-Newtonian hydrodynamics

8.4.1 Introduction

The dynamics of perfect fluids has been a recurring topic in this book. We examined this
first in the context of Newtonian physics in Sec. 1.4, we gave the theory a special-relativistic
formulation in Sec. 4.2, and we promoted this to curved spacetime in Sec. 5.3. In Sec. 7.1.1
we introduced the variables {ρ∗, p,
, v} and incorporated slowly-moving fluids within the
post-Minkowskian approximation.

In Sec. 7.1.1 we saw that the behavior of a perfect fluid is governed by the continuity
equation

∂tρ
∗ + ∂ j (ρ

∗v j ) = 0, (8.103)

and in Sec. 7.3.2 we got re-acquainted with the Euler equation of Chapter 1,

ρ∗ dv j

dt
= ρ∗∂ jU − ∂ j p + O(c−2). (8.104)

We recall that ρ∗ := √−gγρ, with γ := u0/c, is the conserved mass density, and at
Newtonian order there is no distinction between this and the proper density ρ; v j is the
fluid’s velocity field, defined with respect to the time coordinate t , p is the pressure, and
d/dt = ∂t + vk∂k is the Lagrangian time derivative. We recall also that the exact statement
of the first law of thermodynamics for perfect fluids is d
 = (p/ρ2) dρ, which we write as

d


dt
= p

ρ∗2

dρ∗

dt
+ O(c−2). (8.105)

Here 
 is the internal energy of a fluid element divided by its mass.
In this section we calculate the post-Newtonian corrections to Euler’s equation

(8.104). In addition, we derive expressions for the fluid’s conserved mass-energy
M , its total momentum P j , and its center-of-mass position R j . We shall not alter
Eq. (8.103), which is exact, and we shall not need the O(c−2) corrections to Eq. (8.105). In
Chapter 9 we apply these results to situations in which the fluid breaks up into a number of
separated components; this defines the post-Newtonian N -body problem.

8.4.2 Energy-momentum conservation

The components of the energy-momentum tensor of a perfect fluid were listed back in
Eq. (8.7). The equation of energy-momentum conservation is

0 = ∇β T αβ = ∂β T αβ + �α
μβ T μβ + �

β

μβ T αμ , (8.106)
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and this can be simplified if we recall from Sec. 5.2 that �
β

μβ = (−g)−1/2∂β(−g)1/2. We
therefore have

0 = ∂β

(√−gT αβ
) + �α

βγ

(√−gT βγ
)
, (8.107)

and this form of the conservation equation is optimal for the following computations. We
recall that the square root of the metric determinant is given by

√−g = 1 + 2c−2U +
O(c−4).

The zeroth component of Eq. (8.107) gives rise to a statement of energy conservation.
When fully expanded the equation is

0 = 1

c
∂t

(√−gT 00
) + ∂ j

(√−gT 0 j
)

+ �0
00

(√−gT 00
) + 2�0

0 j

(√−gT 0 j
) + �0

jk

(√−gT jk
)
, (8.108)

and this becomes

0 = c
[
∂tρ

∗ + ∂ j (ρ
∗v j )

]

+ 1

c

{
∂t

[
ρ∗

(1

2
v2 + U + 


)]
+ ∂ j

[
ρ∗v j

(1

2
v2 + U + 


)]

+ ∂ j (pv j ) − ρ∗∂tU − 2ρ∗v j∂ jU

}
+ O(c−3), (8.109)

after inserting the components of T αβ and the Christoffel symbols of Eq. (8.15). At order
c we recover the continuity equation (8.103), and at order c−1 we get

0 = ρ∗∂t

(1

2
v2 + 


)
+ ρ∗v j∂ j

(1

2
v2 + 


)
+ ∂ j (pv j ) − ρ∗v j∂ jU (8.110)

after simplification. This is the equation that expresses the local conservation of energy
within the fluid.

The spatial components of Eq. (8.107) provide a statement of momentum conservation.
We write the equation in fully expanded form as

0 = 1

c
∂t

(√−gT 0 j
) + ∂k

(√−gT jk
)

+ �
j
00

(√−gT 00
) + 2�

j
0k

(√−gT 0k
) + �

j
kn

(√−gT kn
)
, (8.111)

and we eventually arrive at

0 = ∂t (μρ∗v j ) + ∂k(μρ∗v jvk) + ∂ j p − ρ∗∂ jU − ρ∗

c2

(
3

2
v2 − 3U + 
 + p/ρ∗

)
∂ jU

+ ρ∗

c2

[
2v j (∂tU + vk∂kU ) − 4∂tU j − 4vk(∂kU j − ∂ jUk) − ∂ j�

]
+ O(c−4)

(8.112)
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after some algebra and simplification. We have introduced

μ := 1 + 1

c2

(1

2
v2 + U + 
 + p/ρ∗

)
+ O(c−4) , (8.113)

and Eq. (8.112) expresses the local conservation of momentum within the fluid.

8.4.3 Post-Newtonian Euler equation

We next work on Eq. (8.112) and bring it to the form of a relativistic generalization of
Eq. (8.104). We begin with the observation that the first two terms on the right-hand side
of Eq. (8.112) can be expressed as

∂t (μρ∗v j ) + ∂k(μρ∗v jvk) = μρ∗ dv j

dt
+ ρ∗v j dμ

dt
(8.114)

after making use of the continuity equation (8.103). If we make the substitution in
Eq. (8.112) and truncate the result at Newtonian order, we recover

ρ∗ dv j

dt
= ρ∗∂ jU − ∂ j p + O(c−2) , (8.115)

the correct expression of Euler’s equation. We are therefore on the right track, and we may
now retrieve the neglected terms of order c−2.

Differentiation of Eq. (8.113) yields

dμ

dt
= 1

c2

(
v j

dv j

dt
+ dU

dt
+ d


dt
+ 1

ρ∗
dp

dt
− p

ρ∗2

dρ∗

dt

)
+ O(c−4), (8.116)

and this becomes

dμ

dt
= 1

c2

(
∂tU + 2vk∂kU + 1

ρ∗ ∂t p

)
+ O(c−4) (8.117)

after insertion of Euler’s equation and Eq. (8.105).
Substitution of Eqs. (8.114) and (8.117) into Eq. (8.112) produces

μρ∗ dv j

dt
= −∂ j p + ρ∗∂ jU − 1

c2
v j∂t p + 1

c2
ρ∗

(
3

2
v2 − 3U + 
 + p

ρ∗

)
∂ jU

− 1

c2
ρ∗

[
v j

(
3∂tU + 4vk∂kU

) − 4∂tU j − 4vk
(
∂kU j − ∂ jUk

)−∂ j�
]
+O(c−4),

(8.118)
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and this becomes

ρ∗ dv j

dt
= −∂ j p + ρ∗∂ jU

+ 1

c2

[(
1

2
v2 + U + 
 + p

ρ∗

)
∂ j p − v j∂t p

]

+ 1

c2
ρ∗

[
(v2 − 4U )∂ jU − v j

(
3∂tU + 4vk∂kU

)
+ 4∂tU j + 4vk

(
∂kU j − ∂ jUk

) + ∂ j�
]

+ O(c−4) (8.119)

after multiplication of each side by μ−1. Equation (8.119) is the post-Newtonian version
of Euler’s equation. This equation, together with the continuity equation (8.103) and an
equation of state relating the pressure, density, and internal energy, completely determines
the behavior of a slowly-moving fluid in a weak gravitational field.

8.4.4 Interlude: Integral identities

We now interrupt the main development and establish a number of identities that will be
required in the following discussion. We first derive the results displayed back in Eqs. (8.10),
and next we shall prove the integral identities

∫
ρ∗∂ jU d3x = 0 , (8.120a)∫
ρ∗U j d3x =

∫
ρ∗Uv j d3x , (8.120b)∫

ρ∗∂ jψ d3x = −
∫

ρ∗( 3
2v2 − U + 
 + 3p/ρ∗)∂ jU d3x , (8.120c)∫

ρ∗v j∂ jU d3x = 1

2

d

dt

∫
ρ∗U d3x , (8.120d)∫

ρ∗vk∂ jUk d3x = 0 , (8.120e)∫
ρ∗vk∂ j�k d3x = 0 , (8.120f)∫
ρ∗x j

(
∂tU − vk∂kU

)
d3x =

∫
ρ∗� j d3x . (8.120g)

The potentials U , U j , ψ , and X are expressed in terms of the fluid variables in Eqs. (8.4);
the auxiliary potential � j was introduced in Eq. (8.8).

As a consequence of Eqs. (8.10) and (8.120b) we also find that

∫
ρ∗(Uv j + ∂t j X

)
d3x =

∫
ρ∗� j d3x . (8.121)
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And combining Eqs. (8.10), (8.120e), and (8.120f) yields∫
ρ∗vk∂t jk X d3x = 0 , (8.122)

another useful integral identity.

Box 8.4 Integration and time differentiation

The integral tricks reviewed here were first introduced back in Sec. 1.4.3. We recall that

d

dt

∫
ρ∗ f (t, x) d3x =

∫
ρ∗ d f

dt
d3x (1)

comes as an immediate consequence of the continuity equation (8.103); here ρ∗ is a function of t and
x, f is an arbitrary function of its arguments, and d f/dt = ∂t f + vk∂k f is its total time deriva-
tive. We generalize this identity by allowing f to be a function of x′ also, and we define F(t, x) :=∫

ρ∗′ f (t, x, x′) d3x ′, withρ∗′ standing forρ∗(t, x′). If we keep x fixed in this equation, Eq. (1) tells
us that

∂t F =
∫

ρ∗′(∂t f + v′k∂k ′ f
)

d3x ′ , (2)

wherev′k is the velocity field expressed as a function of t and x′, and∂k ′ indicates partial differentiationwith
respect to theprimed coordinates. The total timederivative ofF is∂t F + vk∂k F , and this canbeexpressed
as d F/dt = ∫

ρ∗′(∂t f + vk∂k f + v′k∂k ′ f ) d3x ′. The quantity within brackets is recognized as
the total time derivative of the function f (t, x, x′), and we write our identity as

d F

dt
=

∫
ρ∗′ d f

dt
d3x ′ , (3)

with d f/dt = ∂t f + vk∂k f + v′k∂k ′ f . Finally, we define the function F(t) :=∫
ρ∗F(t, x) d3x = ∫

ρ∗ρ∗′ f (t, x, x′) d3x ′d3x and insert F in place of f within Eq. (1).
After also using Eq. (3) we obtain

dF
dt

=
∫

ρ∗ρ∗′ d f

dt
d3x ′d3x , (4)

with d f/dt defined as in Eq. (3).

To establish these results we rely on the integral tricks reviewed in Box 8.4. To obtain
Eqs. (8.10) we first differentiate X = G

∫
ρ∗′|x − x′| d3x ′ with respect to time. Using

Eq. (2) of Box 8.4, we find ∂t X = G
∫

ρ∗′v′k∂k ′ |x − x′| d3x ′, or

∂t X = −G

∫
ρ∗′v′

k

(x − x ′)k

|x − x′| d3x ′ . (8.123)

We next differentiate this with respect to x j and get

∂t j X = −G

∫
ρ∗′v′

k∂ j
(x − x ′)k

|x − x′| d3x ′ , (8.124)
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which becomes

∂t j X = −G

∫
ρ∗′v′

j

|x − x′| d3x ′ + G

∫
ρ∗′v′

k

(x − x ′) j (x − x ′)k

|x − x′|3 (8.125)

after evaluation of the partial derivative. In view of the definitions for U j and � j , this is
just the first of Eqs. (8.10). If we differentiate instead with respect to time, we get

∂t t X = −G

∫
ρ∗′

[
dv′

k

dt

(x − x ′)k

|x − x′| + v′
kv

′ j∂ j ′
(x − x ′)k

|x − x′|
]

d3x ′ .

The second term within the integral is handled as before, but to evaluate the first we
need an expression for ρ∗′dv′

k/dt . This was obtained back in Eq. (8.119), in the form
of the post-Newtonian Euler equation, and we may substitute this here. But since X is a
post-Newtonian potential that always appears with an accompanying factor of c−2, it is
appropriate to truncate the Euler equation to its Newtonian form, and we therefore use
ρ∗′dv′

k/dt = −∂k ′ p′ + ρ∗′∂k ′U ′ + O(c−2). Our expression for ∂t t X becomes

∂t t X = G

∫
∂k ′ p′ (x − x ′)k

|x − x′| d3x ′ − G

∫
ρ∗′∂k ′U ′ (x − x ′)k

|x − x′| d3x ′

+ G

∫
ρ∗′v′2

|x − x′| d3x ′ − G

∫
ρ∗′v′

jv
′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′ , (8.126)

and the first term can be changed to 2G
∫

p′|x − x′|−1 d3x ′ by integration by parts. Taking
into account the definitions of Eqs. (8.8), we see that this is just the second of Eqs. (8.10).

Moving on to the integral identities of Eqs. (8.120), we first differentiate U = ∫
ρ∗′|x −

x′|−1 d3x ′ with respect to x j , multiply by ρ∗, and integrate. This gives

∫
ρ∗∂ jU d3x = G

∫
ρ∗ρ∗′ (x − x ′) j

|x − x′|3 d3x ′d3x,

and by switching the identities of the integration variables (x ↔ x′), we may also express
the right-hand side as G

∫
ρ∗′ρ∗(x ′ − x) j |x′ − x|−3 d3xd3x ′. This is equal and opposite

to the original integral, and we conclude that the integral vanishes; Eq. (8.120a) is thus
established. (We frequently exploit the “switch trick” in the following manipulations.)

With U j = G
∫

ρ∗′v′ j |x − x′|−1 d3x ′ we find that the integral of ρ∗U j is given by

∫
ρ∗U j d3x = G

∫
ρ∗ρ∗′v′ j

|x − x′| d3x ′d3x . (8.127)

Applying the switch trick, we write the right-hand side as G
∫

ρ∗′ρ∗v j |x − x′|−1 d3xd3x ′,
which we recognize as the integral of ρ∗Uv j with respect to d3x . Equation (8.120b) is thus
established, and Eq. (8.120c) is obtained with very similar manipulations.

Moving on to Eq. (8.120d), we write∫
ρ∗v j∂ jU d3x = G

∫
ρ∗ρ∗′v j∂ j |x − x′|−1 d3x ′d3x, (8.128)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-08 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 10:57

406 Post-Newtonian theory: Fundamentals

and note that we can re-express the right-hand side as G
∫

ρ∗′ρ∗v′ j∂ j ′ |x − x′|−1 d3xd3x ′.
Adding the expressions and multiplying by 1

2 , we have

1

2
G

∫
ρ∗ρ∗′(v j∂ j + v′ j∂ j ′

)|x − x′|−1 d3x ′d3x,

and according to Eq. (4) of Box 8.4, this is

1

2
G

d

dt

∫
ρ∗ρ∗′|x − x′|−1 d3x ′d3x .

We recognize this as the time derivative of 1
2

∫
ρ∗U d3x , and we have established

Eq. (8.120d).
The identities of Eqs. (8.120e) and (8.120f) are obtained almost immediately by writing

out the integrals and exploiting the switch trick. For Eq. (8.120g) we differentiate the
Newtonian potential and construct the integrals that appear on the left-hand side. We have∫

ρ∗x j∂tU d3x = G

∫
ρ∗ρ∗′v′

k x j (x − x ′)k

|x − x′|3 d3x ′d3x (8.129)

and ∫
ρ∗x jvk∂kU d3x = −G

∫
ρ∗ρ∗′vk x j (x − x ′)k

|x − x′|3 d3x ′d3x

= G

∫
ρ∗′ρ∗v′

k x ′ j (x − x ′)k

|x − x′|3 d3xd3x ′, (8.130)

and combining the results produces∫
ρ∗x j (∂tU − vk∂kU ) d3x = G

∫
ρ∗ρ∗′v′

k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′d3x . (8.131)

In view of the definition of � j provided by Eq. (8.8), this is just Eq. (8.120g).

8.4.5 Conservation of mass-energy

We now resume our development of post-Newtonian hydrodynamics. In this and the fol-
lowing sections we obtain expressions for the total mass-energy M and momentum P j of a
fluid system, as well as an expression for the position R j of the center-of-mass, defined in
such a way that M Ṙ j = P j . Our strategy is to manipulate the local conservation statements
of Eqs. (8.110) and (8.112) to obtain integral statements; the conserved integrals are then
identified with M and P j .

The total material mass of the fluid system is

m :=
∫

ρ∗ d3x, (8.132)

and this is conserved by virtue of Eq. (1) of Box 8.4: substituting f = 1 gives dm/dt = 0
immediately.

To derive an expression for the total energy E we write Eq. (8.110) as

0 = ρ∗ d

dt

(1

2
v2 + 


)
− ρ∗v j∂ jU + ∂ j (pv j ) + O(c−2). (8.133)
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Integrating this over the volume occupied by the fluid, we find that the first term gives
rise to

d

dt

∫
ρ∗

(1

2
v2 + 


)
d3x

after taking the total time derivative outside the integral. By virtue of Eq. (8.120d) we find
that the second term contributes

d

dt

∫
ρ∗

(
−1

2
U

)
d3x,

and the third term vanishes (by Gauss’s theorem) after integration. Writing

E = T + � + Eint + O(c−2) (8.134)

with

T := 1

2

∫
ρ∗v2 d3x, (8.135a)

� := −1

2

∫
ρ∗U d3x, (8.135b)

Eint :=
∫

ρ∗
 d3x, (8.135c)

we have shown that d E/dt = 0. We recognize in T the total kinetic energy of the fluid, �

is the total gravitational potential energy, and Eint is the total internal energy; these add up
to the conserved energy E .

The total mass-energy M of the fluid system is defined by M := m + E/c2. Combining
Eqs. (8.132) and (8.134), this is

M :=
∫

ρ∗
[

1 + 1

c2

(1

2
v2 − 1

2
U + 


)]
d3x + O(c−4), (8.136)

and we have that d M/dt = 0. We have encountered the expression of Eq. (8.136) before,
back in Sec. 7.3.2, in the context of the post-Minkowskian approximation. In Chapter 7 the
total mass-energy was defined by M := c−2

∫
(−g)(T 00 + t00

LL) d3x , in terms of the fluid’s
energy-momentum tensor and the Landau–Lifshitz pseudotensor. In the present context,
our expression for M was obtained by manipulating the fluid equations, and it is reassuring
that we have complete consistency between the two approaches.

8.4.6 Conservation of momentum

More work is required to identify the total momentum P j and show that d P j/dt = 0. We
return to Eq. (8.112) and examine the second group of post-Newtonian terms. We see that
the terms involving the Newtonian potential can be grouped into

2ρ∗v j
dU

dt
= 2ρ∗ d

dt
(Uv j ) − 2ρ∗U

dv j

dt
, (8.137)

or

2ρ∗v j
dU

dt
= 2ρ∗ d

dt
(Uv j ) + 2U∂ j p − 2ρ∗U∂ jU + O(c−2) (8.138)
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after inserting the Newtonian version of Euler’s equation. The terms involving the vector
potential can similarly be expressed as −4ρ∗(dU j/dt − vk∂ jUk), and we find that the local
statement of momentum conservation becomes

0 = ∂t (μρ∗v j ) + ∂k(μρ∗v jvk) + ∂ j p − ρ∗∂ jU + 2

c2
U∂ j p

− 1

c2
ρ∗

(
3

2
v2 − U + 
 + p/ρ∗

)
∂ jU + 2

c2
ρ∗ d

dt

(
Uv j − 2U j

)

+ 4

c2
ρ∗vk∂ jUk − 1

c2
ρ∗∂ j� + O(c−4), (8.139)

with μ defined by Eq. (8.113).
We next integrate this equation over the volume occupied by the fluid. Examining each

term in turn, we find that the integral of the first term contributes

d

dt

∫
μρ∗v j d3x,

but that the integrals of the second, third, and fourth terms vanish by virtue of Gauss’s
theorem and the identity of Eq. (8.120a). For the fifth term we get −2c−2

∫
p∂ jU d3x

after integration by parts. Leaving the sixth term alone for the time being, we note that the
seventh term becomes

2

c2

d

dt

∫
ρ∗(Uv j − 2U j ) d3x = − 2

c2

d

dt

∫
ρ∗Uv j d3x (8.140)

after involvement of Eq. (8.120b). And finally, we obtain

0 = d

dt

∫
μρ∗v j d3x − 2

c2

d

dt

∫
ρ∗Uv j d3x

− 1

c2

∫
ρ∗

(
3

2
v2 − U + 
 + 3p/ρ∗

)
∂ jU d3x + 4

c2

∫
ρ∗vk∂ jUk d3x

− 1

c2

∫
ρ∗∂ jψ d3x − 1

2c2

∫
ρ∗∂t t j X d3x + O(c−4) (8.141)

after inserting � = ψ + 1
2∂t t X within the last term. This simplifies to

0 = d

dt

∫
μρ∗v j d3x − 2

c2

d

dt

∫
ρ∗Uv j d3x − 1

2c2

∫
ρ∗∂t t j X d3x + O(c−4) (8.142)

when we invoke the identities of Eqs. (8.120c) and (8.120e).
We must now work on the term involving the superpotential. We write

ρ∗∂t t j X = ρ∗ d

dt

(
∂t j X

) − ρ∗vk∂t jk X (8.143)

and integrate. We obtain∫
ρ∗∂t t j X d3x = − d

dt

∫
ρ∗U j d3x + d

dt

∫
ρ∗� j d3x (8.144)

after using Eqs. (8.10) and (8.122), and we note that by virtue of Eq. (8.120b), the first
integral on the right-hand side can also be expressed as

∫
ρ∗Uv j d3x .
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Collecting results, we have obtained the conservation statement d P j/dt = 0, with the
total momentum P j identified as

P j :=
∫

ρ∗v j

[
1 + 1

c2

(1

2
v2 − 1

2
U + 
 + p/ρ∗

)]
d3x − 1

2c2

∫
ρ∗� j d3x + O(c−4).

(8.145)
We recall that the potential � j was defined by Eq. (8.8). In Chapter 7 the total momentum
was defined as P j := c−1

∫
(−g)(T 0 j + t0 j

LL) d3x , and this led to the expression displayed
in Eq. (7.65). A glance at Eq. (8.120g) confirms that the two expressions are equivalent.

The total momentum of a post-Newtonian spacetime can always be made to vanish
by performing a post-Galilean transformation of the type described in Sec. 8.3.6. The
transformation is characterized by the velocity vector V j = P j/M .

8.4.7 Center-of-mass

Inspection of Eq. (8.132) suggests that a plausible expression for the position of the center-
of-mass might be

R j := 1

M

∫
ρ∗x j

[
1 + 1

c2

(1

2
v2 − 1

2
U + 


)]
d3x + O(c−4). (8.146)

This matches the result obtained back in Sec. 7.3.2 on the basis of the post-Minkowskian
definition R j := (Mc2)−1

∫
(−g)(T 00 + t00

LL)x j d3x . We confirm this result by proving that
with Eq. (8.146), we can produce the expected center-of-mass relation

M Ṙ j = P j + O(c−4). (8.147)

Once P j has been set equal to zero by performing a post-Galilean transformation, the
position of the center-of-mass is fixed in space, and a constant translation of the spatial
coordinates allows us to set R j = 0. The conditions P j = 0 and R j = 0 define the center-
of-mass frame of the fluid system.

We express Eq. (8.146) as M R j = ∫
νρ∗x j d3x + O(c−4), with ν = 1 + c−2( 1

2v2 −
1
2U + 
). Differentiation with respect to time produces

M Ṙ j =
∫

νρ∗v j d3x +
∫

ρ∗x j dν

dt
d3x, (8.148)

and this can be written in the form

M Ṙ j = P j − 1

c2

∫
pv j d3x + 1

2c2

∫
ρ∗� j d3x +

∫
ρ∗x j dν

dt
d3x (8.149)

after incorporating Eq. (8.145). The derivative of ν can be evaluated with the help of Euler’s
equation (8.104) and the first law of thermodynamics, Eq. (8.105). We obtain

ρ∗x j dν

dt
= − 1

c2
x j∂k(pvk) − 1

2c2
ρ∗x j

(
∂tU − vk∂kU

) + O(c−4), (8.150)
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and integration yields∫
ρ∗x j dν

dt
d3x = 1

c2

∫
pv j d3x − 1

2c2

∫
ρ∗� j d3x + O(c−4); (8.151)

we integrated the first term by parts and made use of Eq. (8.120g) for the second term.
Making the substitution into Eq. (8.149), we see that Eq. (8.147) is indeed satisfied.

8.5 Bibliographical remarks

The Maxwell-like formulation of the equations of post-Newtonian theory, as reviewed
in Box 8.1, has received a number of presentations in the literature. One of the earliest
incarnations was provided by Braginskii, Caves, and Thorne (1977).

The classic approach to post-Newtonian theory can be traced to the earliest days of
general relativity. Representative works are Lorentz and Droste (1917), Eddington and
Clark (1938), Einstein, Infeld, and Hoffmann (1938), and the treatise by Fock (1959).
The work was invigorated by Chandrasekhar in the nineteen sixties, through a series of
papers written with students and collaborators: Chandrasekhar and Contopoulos (1967),
Chandrasekhar (1965 and 1969), Chandrasekhar and Nutku (1969), and Chandrasekhar and
Esposito (1970).

The theory of post-Newtonian coordinate transformations developed in Sec. 8.3 was
first initiated by Damour, Soffel, and Xu (1991); our treatment follows Racine and Flana-
gan (2005). The post-Galilean subclass of transformations was first investigated in Chan-
drasekhar and Contopoulos (1967). The rotating coordinates of Sec. 8.3 and the darned
disk are described in some detail in Robertson and Noonan (1968).

The post-Newtonian theory of fluid dynamics was first developed in Chandrasekhar
(1965 and 1969). Our treatment in Sec. 8.4 follows the master’s work quite closely.

8.6 Exercises

8.1 Show that the inverse to the metric of Eqs. (8.20) is given by

g00 = −1 − 2

c2
U − 2

c4

(
� + U 2

) + O(c−6) ,

g0 j = − 4

c3
U j + O(c−5) ,

g jk =
(

1 − 2

c2
U

)
δ jk + O(c−4) ,

where U j := δ jkUk . Show that the metric determinant is
√−g = 1 + 2U/c2 +

O(c−4). Verify Eqs. (8.15) for the Christoffel symbols.
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8.2 Show that the post-Newtonian version of the geodesic equation Duα/dτ = 0 can be
presented in the form

d(gsγ v)

dt
= γ

(
Eg + v × Bg + v2∇gs

)
+ O(c−4) ,

where Eg and Bg are the gravitational fields defined in Box 8.1, γ := dt/dτ , and
gs = 1 + 2c−2U is the coefficient of the spatial part of the metric.

8.3 (a) Show that the coordinate transformation

t = t̄ , x j = x̄ j + λ

c2
∂j̄ X̄ ,

in which λ is a constant, produces a new post-Newtonian metric given by

ḡ00 = g00 − 2λ

c4
(Ū 2 − �̄2 + �̄W ) ,

ḡ0 j = g0 j + λ

c3
∂t̄ j̄ X̄ ,

ḡ jk = g jk + 2λ

c2
∂j̄ k̄ X̄ ,

where gαβ denotes the original post-Newtonian metric, with all potentials defined
in terms of x̄α , and where �̄W is an auxiliary potential (known as the Whitehead
potential) defined by

�̄W := G2
∫

ρ̄∗′ρ̄∗′′ (x̄ − x̄ ′) j

|x̄ − x̄′|3
[

(x̄ ′ − x̄ ′′) j

|x̄ − x̄′′| − (x̄ − x̄ ′′) j

|x̄′ − x̄′′|
]

d3 x̄ ′d3 x̄ ′′ .

(b) Consider a static system with a “point mass” at the origin. This assumption allows
us to ignore the potentials ψ̄ , �̄2, and �̄W , and to set all time derivatives to zero.
Find the value of λ for which the metric is linear in Ū to post-Newtonian order.
Show that the line element in spherical polar coordinates can be expressed to
post-Newtonian order as

ds2 = −(1 − R/r̄ ) (cdt̄)2 + (1 − R/r̄ )−1 dr̄2 + r̄2
(
d θ̄2 + sin2 θ̄dφ̄2

)
,

where R = (2G/c2)
∫

ρ∗ d3x = 2Gm/c2. What is this metric?

8.4 (a) Using the expressions for the Landau–Lifshitz pseudotensor given in Eqs. (7.48)
and (7.49), together with the post-Newtonian expression for the potentials hαβ

2

from Box 7.5, show that the components of the effective energy-momentum
pseudotensor τ 0 j and τ jk are given to post-Newtonian order by

c−1τ 0 j = ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 3U + 
 + p/ρ∗

)]

+ 1

4πGc2

[
3∂tU∂ jU + 4

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−4) ,
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and

τ jk = ρ∗v jvk

[
1 + 1

c2

(1

2
v2 + 3U + 
 + p/ρ∗

)]
+ p

(
1 + 2

c2
U

)
δ jk

+ 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂nU∂nU

)
1

4πGc2

{
2∂ ( jU∂k)� − 16∂ [ jU n]∂ [kU n] + 8∂ ( jU∂tU

k)

− δ jk
[
∂nU∂n� − 4∂ [mU n]∂ [mU n] + 4∂nU∂tU

n + 3

2
(∂tU )2

]}
+ O(c−4) ,

where � = ψ + 1
2∂t t X .

(b) Show that the conservation statement ∂βτ jβ = 0 yields the post-Newtonian ver-
sion of Euler’s equation, as displayed in Eq. (8.119). You may make use of the
continuity equation for ρ∗, the first law of thermodynamics, and the Poisson
equations satisfied by the various potentials.

8.5 In this problem we consider the equilibrium structure of a spherical body in post-
Newtonian theory, thereby generalizing the Newtonian discussion of Sec. 2.2. We
assume that the matter distribution is static and spherically-symmetric, so that all
variables depend on r only. Show that under these conditions, the gravitational po-
tentials are determined by the set of equations

dU

dr
= −Gm

r2
,

dm

dr
= 4πr2ρ∗,

d�

dr
= −Gn

r2
,

dn

dr
= 4πr2ρ∗(−U + 
 + 3p/ρ∗),

where n is a post-Newtonian auxiliary variable analogous to the Newtonian mass
function m. Show also that the equation of hydrostatic equilibrium becomes

dp

dr
= −Gρ∗

r2

{
m + 1

c2

[
(−3U + 
 + p/ρ∗)m + n

]}
+ O(c−4).

These equations are to be supplemented by an equation of state p = p(ρ∗) and the
first law of thermodynamics, d
 = (p/ρ∗2) dρ∗ + O(c−2).

8.6 The equations derived in the preceding problem should agree with the exact formu-
lation of the structure equations, as presented in Sec. 5.6.5, when these are expressed
as a post-Newtonian expansion. The comparison, however, is not entirely straightfor-
ward, because the formulations use different variables and coordinates.
(a) By comparing the metric of Eq. (5.156) with the post-Newtonian metric of

Eq. (8.2), relate the radial coordinate r̄ of Sec. 5.6.5 (perversely denoted r there)
to the harmonic radial coordinate r employed in this chapter.

(b) Show that the metric functions are related by � = U + �/c2 + O(c−4) and
m̄ = m + O(c−2), where m̄ is the mass function defined by Eq. (5.158) (and
denoted m there).
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(c) Prove that when Eqs. (5.215), (5.216), and (5.218) are expanded through order
c−2 in a post-Newtonian expansion, they agree with the equations derived in the
preceding problem.

(d) Show that the comparison relies on the identification

m̄ = m + 1

c2

(
n + mU − Gm2/r − 4πr3 p

) + O(c−4)

for the relativistic mass function.

8.7 Using the Newtonian Euler equation and the first law of thermodynamics, verify the
energy conservation equation Eq. (8.110).

8.8 Show that the conserved angular momentum tensor for an isolated system is given to
post-Newtonian order by

J jk = 2
∫

ρ∗x [ j

{
vk] + vk]

c2

(
1

2
v2 + 3U + 
 + p/ρ∗

)

− 1

c2

(
4U k] − 1

2
∂

k]
t X

)}
d3x .

8.9 Verify the integral identities of Eqs. (8.120e) and (8.120f).
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